Finite Math Examples

Solve for x y=9/(x^2-1)
Step 1
Rewrite the equation as .
Step 2
Factor each term.
Tap for more steps...
Step 2.1
Rewrite as .
Step 2.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3
Find the LCD of the terms in the equation.
Tap for more steps...
Step 3.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 3.2
The LCM of one and any expression is the expression.
Step 4
Multiply each term in by to eliminate the fractions.
Tap for more steps...
Step 4.1
Multiply each term in by .
Step 4.2
Simplify the left side.
Tap for more steps...
Step 4.2.1
Cancel the common factor of .
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
Step 4.2.1.2
Rewrite the expression.
Step 4.3
Simplify the right side.
Tap for more steps...
Step 4.3.1
Expand using the FOIL Method.
Tap for more steps...
Step 4.3.1.1
Apply the distributive property.
Step 4.3.1.2
Apply the distributive property.
Step 4.3.1.3
Apply the distributive property.
Step 4.3.2
Simplify and combine like terms.
Tap for more steps...
Step 4.3.2.1
Simplify each term.
Tap for more steps...
Step 4.3.2.1.1
Multiply by .
Step 4.3.2.1.2
Move to the left of .
Step 4.3.2.1.3
Rewrite as .
Step 4.3.2.1.4
Multiply by .
Step 4.3.2.1.5
Multiply by .
Step 4.3.2.2
Add and .
Step 4.3.2.3
Add and .
Step 4.3.3
Simplify by multiplying through.
Tap for more steps...
Step 4.3.3.1
Apply the distributive property.
Step 4.3.3.2
Move to the left of .
Step 4.3.4
Rewrite as .
Step 5
Solve the equation.
Tap for more steps...
Step 5.1
Rewrite the equation as .
Step 5.2
Add to both sides of the equation.
Step 5.3
Divide each term in by and simplify.
Tap for more steps...
Step 5.3.1
Divide each term in by .
Step 5.3.2
Simplify the left side.
Tap for more steps...
Step 5.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 5.3.2.1.1
Cancel the common factor.
Step 5.3.2.1.2
Divide by .
Step 5.3.3
Simplify the right side.
Tap for more steps...
Step 5.3.3.1
Cancel the common factor of .
Tap for more steps...
Step 5.3.3.1.1
Cancel the common factor.
Step 5.3.3.1.2
Rewrite the expression.
Step 5.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 5.5
Simplify .
Tap for more steps...
Step 5.5.1
Write as a fraction with a common denominator.
Step 5.5.2
Combine the numerators over the common denominator.
Step 5.5.3
Rewrite as .
Step 5.5.4
Multiply by .
Step 5.5.5
Combine and simplify the denominator.
Tap for more steps...
Step 5.5.5.1
Multiply by .
Step 5.5.5.2
Raise to the power of .
Step 5.5.5.3
Raise to the power of .
Step 5.5.5.4
Use the power rule to combine exponents.
Step 5.5.5.5
Add and .
Step 5.5.5.6
Rewrite as .
Tap for more steps...
Step 5.5.5.6.1
Use to rewrite as .
Step 5.5.5.6.2
Apply the power rule and multiply exponents, .
Step 5.5.5.6.3
Combine and .
Step 5.5.5.6.4
Cancel the common factor of .
Tap for more steps...
Step 5.5.5.6.4.1
Cancel the common factor.
Step 5.5.5.6.4.2
Rewrite the expression.
Step 5.5.5.6.5
Simplify.
Step 5.5.6
Combine using the product rule for radicals.
Step 5.5.7
Reorder factors in .
Step 5.6
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 5.6.1
First, use the positive value of the to find the first solution.
Step 5.6.2
Next, use the negative value of the to find the second solution.
Step 5.6.3
The complete solution is the result of both the positive and negative portions of the solution.