Enter a problem...
Finite Math Examples
y=x2-1x2-7x+12y=x2−1x2−7x+12
Step 1
Rewrite the equation as x2-1x2-7x+12=y.
x2-1x2-7x+12=y
Step 2
Step 2.1
Rewrite 1 as 12.
x2-12x2-7x+12=y
Step 2.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=x and b=1.
(x+1)(x-1)x2-7x+12=y
Step 2.3
Factor x2-7x+12 using the AC method.
Step 2.3.1
Consider the form x2+bx+c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is 12 and whose sum is -7.
-4,-3
Step 2.3.2
Write the factored form using these integers.
(x+1)(x-1)(x-4)(x-3)=y
(x+1)(x-1)(x-4)(x-3)=y
(x+1)(x-1)(x-4)(x-3)=y
Step 3
Step 3.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
(x-4)(x-3),1
Step 3.2
The LCM of one and any expression is the expression.
(x-4)(x-3)
(x-4)(x-3)
Step 4
Step 4.1
Multiply each term in (x+1)(x-1)(x-4)(x-3)=y by (x-4)(x-3).
(x+1)(x-1)(x-4)(x-3)((x-4)(x-3))=y((x-4)(x-3))
Step 4.2
Simplify the left side.
Step 4.2.1
Cancel the common factor of (x-4)(x-3).
Step 4.2.1.1
Cancel the common factor.
(x+1)(x-1)(x-4)(x-3)((x-4)(x-3))=y((x-4)(x-3))
Step 4.2.1.2
Rewrite the expression.
(x+1)(x-1)=y((x-4)(x-3))
(x+1)(x-1)=y((x-4)(x-3))
Step 4.2.2
Expand (x+1)(x-1) using the FOIL Method.
Step 4.2.2.1
Apply the distributive property.
x(x-1)+1(x-1)=y((x-4)(x-3))
Step 4.2.2.2
Apply the distributive property.
x⋅x+x⋅-1+1(x-1)=y((x-4)(x-3))
Step 4.2.2.3
Apply the distributive property.
x⋅x+x⋅-1+1x+1⋅-1=y((x-4)(x-3))
x⋅x+x⋅-1+1x+1⋅-1=y((x-4)(x-3))
Step 4.2.3
Simplify and combine like terms.
Step 4.2.3.1
Simplify each term.
Step 4.2.3.1.1
Multiply x by x.
x2+x⋅-1+1x+1⋅-1=y((x-4)(x-3))
Step 4.2.3.1.2
Move -1 to the left of x.
x2-1⋅x+1x+1⋅-1=y((x-4)(x-3))
Step 4.2.3.1.3
Rewrite -1x as -x.
x2-x+1x+1⋅-1=y((x-4)(x-3))
Step 4.2.3.1.4
Multiply x by 1.
x2-x+x+1⋅-1=y((x-4)(x-3))
Step 4.2.3.1.5
Multiply -1 by 1.
x2-x+x-1=y((x-4)(x-3))
x2-x+x-1=y((x-4)(x-3))
Step 4.2.3.2
Add -x and x.
x2+0-1=y((x-4)(x-3))
Step 4.2.3.3
Add x2 and 0.
x2-1=y((x-4)(x-3))
x2-1=y((x-4)(x-3))
x2-1=y((x-4)(x-3))
Step 4.3
Simplify the right side.
Step 4.3.1
Expand (x-4)(x-3) using the FOIL Method.
Step 4.3.1.1
Apply the distributive property.
x2-1=y(x(x-3)-4(x-3))
Step 4.3.1.2
Apply the distributive property.
x2-1=y(x⋅x+x⋅-3-4(x-3))
Step 4.3.1.3
Apply the distributive property.
x2-1=y(x⋅x+x⋅-3-4x-4⋅-3)
x2-1=y(x⋅x+x⋅-3-4x-4⋅-3)
Step 4.3.2
Simplify and combine like terms.
Step 4.3.2.1
Simplify each term.
Step 4.3.2.1.1
Multiply x by x.
x2-1=y(x2+x⋅-3-4x-4⋅-3)
Step 4.3.2.1.2
Move -3 to the left of x.
x2-1=y(x2-3⋅x-4x-4⋅-3)
Step 4.3.2.1.3
Multiply -4 by -3.
x2-1=y(x2-3x-4x+12)
x2-1=y(x2-3x-4x+12)
Step 4.3.2.2
Subtract 4x from -3x.
x2-1=y(x2-7x+12)
x2-1=y(x2-7x+12)
Step 4.3.3
Apply the distributive property.
x2-1=yx2+y(-7x)+y⋅12
Step 4.3.4
Simplify.
Step 4.3.4.1
Rewrite using the commutative property of multiplication.
x2-1=yx2-7yx+y⋅12
Step 4.3.4.2
Move 12 to the left of y.
x2-1=yx2-7yx+12⋅y
x2-1=yx2-7yx+12y
x2-1=yx2-7yx+12y
x2-1=yx2-7yx+12y
Step 5
Step 5.1
Since x is on the right side of the equation, switch the sides so it is on the left side of the equation.
yx2-7yx+12y=x2-1
Step 5.2
Subtract x2 from both sides of the equation.
yx2-7yx+12y-x2=-1
Step 5.3
Add 1 to both sides of the equation.
yx2-7yx+12y-x2+1=0
Step 5.4
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 5.5
Substitute the values a=y-1, b=-7y, and c=12y+1 into the quadratic formula and solve for x.
7y±√(-7y)2-4⋅((y-1)⋅(12y+1))2(y-1)
Step 5.6
Simplify the numerator.
Step 5.6.1
Apply the product rule to -7y.
x=7y±√(-7)2y2-4⋅(y-1)⋅(12y+1)2(y-1)
Step 5.6.2
Raise -7 to the power of 2.
x=7y±√49y2-4⋅(y-1)⋅(12y+1)2(y-1)
Step 5.6.3
Apply the distributive property.
x=7y±√49y2+(-4y-4⋅-1)⋅(12y+1)2(y-1)
Step 5.6.4
Multiply -4 by -1.
x=7y±√49y2+(-4y+4)⋅(12y+1)2(y-1)
Step 5.6.5
Expand (-4y+4)(12y+1) using the FOIL Method.
Step 5.6.5.1
Apply the distributive property.
x=7y±√49y2-4y(12y+1)+4(12y+1)2(y-1)
Step 5.6.5.2
Apply the distributive property.
x=7y±√49y2-4y(12y)-4y⋅1+4(12y+1)2(y-1)
Step 5.6.5.3
Apply the distributive property.
x=7y±√49y2-4y(12y)-4y⋅1+4(12y)+4⋅12(y-1)
x=7y±√49y2-4y(12y)-4y⋅1+4(12y)+4⋅12(y-1)
Step 5.6.6
Simplify and combine like terms.
Step 5.6.6.1
Simplify each term.
Step 5.6.6.1.1
Rewrite using the commutative property of multiplication.
x=7y±√49y2-4⋅(12y⋅y)-4y⋅1+4(12y)+4⋅12(y-1)
Step 5.6.6.1.2
Multiply y by y by adding the exponents.
Step 5.6.6.1.2.1
Move y.
x=7y±√49y2-4⋅(12(y⋅y))-4y⋅1+4(12y)+4⋅12(y-1)
Step 5.6.6.1.2.2
Multiply y by y.
x=7y±√49y2-4⋅(12y2)-4y⋅1+4(12y)+4⋅12(y-1)
x=7y±√49y2-4⋅(12y2)-4y⋅1+4(12y)+4⋅12(y-1)
Step 5.6.6.1.3
Multiply -4 by 12.
x=7y±√49y2-48y2-4y⋅1+4(12y)+4⋅12(y-1)
Step 5.6.6.1.4
Multiply -4 by 1.
x=7y±√49y2-48y2-4y+4(12y)+4⋅12(y-1)
Step 5.6.6.1.5
Multiply 12 by 4.
x=7y±√49y2-48y2-4y+48y+4⋅12(y-1)
Step 5.6.6.1.6
Multiply 4 by 1.
x=7y±√49y2-48y2-4y+48y+42(y-1)
x=7y±√49y2-48y2-4y+48y+42(y-1)
Step 5.6.6.2
Add -4y and 48y.
x=7y±√49y2-48y2+44y+42(y-1)
x=7y±√49y2-48y2+44y+42(y-1)
Step 5.6.7
Subtract 48y2 from 49y2.
x=7y±√y2+44y+42(y-1)
x=7y±√y2+44y+42(y-1)
Step 5.7
The final answer is the combination of both solutions.
x=7y+√y2+44y+42(y-1)
x=7y-√y2+44y+42(y-1)
x=7y+√y2+44y+42(y-1)
x=7y-√y2+44y+42(y-1)