Finite Math Examples

Solve for x a(n)=1/3*(1-(-1/2)^(n-1))
a(n)=13(1-(-12)n-1)a(n)=13(1(12)n1)
Step 1
Simplify.
Tap for more steps...
Step 1.1
Simplify each term.
Tap for more steps...
Step 1.1.1
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 1.1.1.1
Apply the product rule to -1212.
an=13(1-((-1)n-1(12)n-1))an=13(1((1)n1(12)n1))
Step 1.1.1.2
Apply the product rule to 1212.
an=13(1-((-1)n-11n-12n-1))an=13(1((1)n11n12n1))
an=13(1-((-1)n-11n-12n-1))an=13(1((1)n11n12n1))
Step 1.1.2
Multiply -11 by (-1)n-1(1)n1 by adding the exponents.
Tap for more steps...
Step 1.1.2.1
Move (-1)n-1(1)n1.
an=13(1+(-1)n-1-11n-12n-1)an=13(1+(1)n111n12n1)
Step 1.1.2.2
Multiply (-1)n-1(1)n1 by -11.
Tap for more steps...
Step 1.1.2.2.1
Raise -11 to the power of 11.
an=13(1+(-1)n-1(-1)11n-12n-1)an=13(1+(1)n1(1)11n12n1)
Step 1.1.2.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
an=13(1+(-1)n-1+11n-12n-1)an=13(1+(1)n1+11n12n1)
an=13(1+(-1)n-1+11n-12n-1)an=13(1+(1)n1+11n12n1)
Step 1.1.2.3
Combine the opposite terms in n-1+1n1+1.
Tap for more steps...
Step 1.1.2.3.1
Add -1 and 1.
an=13(1+(-1)n+01n-12n-1)
Step 1.1.2.3.2
Add n and 0.
an=13(1+(-1)n1n-12n-1)
an=13(1+(-1)n1n-12n-1)
an=13(1+(-1)n1n-12n-1)
Step 1.1.3
One to any power is one.
an=13(1+(-1)n12n-1)
Step 1.1.4
Combine (-1)n and 12n-1.
an=13(1+(-1)n2n-1)
an=13(1+(-1)n2n-1)
Step 1.2
Apply the distributive property.
an=131+13(-1)n2n-1
Step 1.3
Multiply 13 by 1.
an=13+13(-1)n2n-1
Step 1.4
Combine.
an=13+1(-1)n32n-1
Step 1.5
Multiply (-1)n by 1.
an=13+(-1)n32n-1
an=13+(-1)n32n-1
Step 2
Divide each term in an=13+(-1)n32n-1 by n and simplify.
Tap for more steps...
Step 2.1
Divide each term in an=13+(-1)n32n-1 by n.
ann=13n+(-1)n32n-1n
Step 2.2
Simplify the left side.
Tap for more steps...
Step 2.2.1
Cancel the common factor of n.
Tap for more steps...
Step 2.2.1.1
Cancel the common factor.
ann=13n+(-1)n32n-1n
Step 2.2.1.2
Divide a by 1.
a=13n+(-1)n32n-1n
a=13n+(-1)n32n-1n
a=13n+(-1)n32n-1n
Step 2.3
Simplify the right side.
Tap for more steps...
Step 2.3.1
Combine the numerators over the common denominator.
a=13+(-1)n32n-1n
Step 2.3.2
Simplify the numerator.
Tap for more steps...
Step 2.3.2.1
To write 13 as a fraction with a common denominator, multiply by 2n-12n-1.
a=132n-12n-1+(-1)n32n-1n
Step 2.3.2.2
Multiply 13 by 2n-12n-1.
a=2n-132n-1+(-1)n32n-1n
Step 2.3.2.3
Combine the numerators over the common denominator.
a=2n-1+(-1)n32n-1n
a=2n-1+(-1)n32n-1n
Step 2.3.3
Multiply the numerator by the reciprocal of the denominator.
a=2n-1+(-1)n32n-11n
Step 2.3.4
Multiply 2n-1+(-1)n32n-1 by 1n.
a=2n-1+(-1)n32n-1n
Step 2.3.5
Reorder factors in 2n-1+(-1)n32n-1n.
a=2n-1+(-1)n3n2n-1
a=2n-1+(-1)n3n2n-1
a=2n-1+(-1)n3n2n-1
 [x2  12  π  xdx ]