Enter a problem...
Finite Math Examples
a(n)=13⋅(1-(-12)n-1)a(n)=13⋅(1−(−12)n−1)
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Step 1.1.1.1
Apply the product rule to -12−12.
an=13⋅(1-((-1)n-1(12)n-1))an=13⋅(1−((−1)n−1(12)n−1))
Step 1.1.1.2
Apply the product rule to 1212.
an=13⋅(1-((-1)n-11n-12n-1))an=13⋅(1−((−1)n−11n−12n−1))
an=13⋅(1-((-1)n-11n-12n-1))an=13⋅(1−((−1)n−11n−12n−1))
Step 1.1.2
Multiply -1−1 by (-1)n-1(−1)n−1 by adding the exponents.
Step 1.1.2.1
Move (-1)n-1(−1)n−1.
an=13⋅(1+(-1)n-1⋅-11n-12n-1)an=13⋅(1+(−1)n−1⋅−11n−12n−1)
Step 1.1.2.2
Multiply (-1)n-1(−1)n−1 by -1−1.
Step 1.1.2.2.1
Raise -1−1 to the power of 11.
an=13⋅(1+(-1)n-1⋅(-1)11n-12n-1)an=13⋅(1+(−1)n−1⋅(−1)11n−12n−1)
Step 1.1.2.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
an=13⋅(1+(-1)n-1+11n-12n-1)an=13⋅(1+(−1)n−1+11n−12n−1)
an=13⋅(1+(-1)n-1+11n-12n-1)an=13⋅(1+(−1)n−1+11n−12n−1)
Step 1.1.2.3
Combine the opposite terms in n-1+1n−1+1.
Step 1.1.2.3.1
Add -1 and 1.
an=13⋅(1+(-1)n+01n-12n-1)
Step 1.1.2.3.2
Add n and 0.
an=13⋅(1+(-1)n1n-12n-1)
an=13⋅(1+(-1)n1n-12n-1)
an=13⋅(1+(-1)n1n-12n-1)
Step 1.1.3
One to any power is one.
an=13⋅(1+(-1)n12n-1)
Step 1.1.4
Combine (-1)n and 12n-1.
an=13⋅(1+(-1)n2n-1)
an=13⋅(1+(-1)n2n-1)
Step 1.2
Apply the distributive property.
an=13⋅1+13⋅(-1)n2n-1
Step 1.3
Multiply 13 by 1.
an=13+13⋅(-1)n2n-1
Step 1.4
Combine.
an=13+1(-1)n3⋅2n-1
Step 1.5
Multiply (-1)n by 1.
an=13+(-1)n3⋅2n-1
an=13+(-1)n3⋅2n-1
Step 2
Step 2.1
Divide each term in an=13+(-1)n3⋅2n-1 by n.
ann=13n+(-1)n3⋅2n-1n
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of n.
Step 2.2.1.1
Cancel the common factor.
ann=13n+(-1)n3⋅2n-1n
Step 2.2.1.2
Divide a by 1.
a=13n+(-1)n3⋅2n-1n
a=13n+(-1)n3⋅2n-1n
a=13n+(-1)n3⋅2n-1n
Step 2.3
Simplify the right side.
Step 2.3.1
Combine the numerators over the common denominator.
a=13+(-1)n3⋅2n-1n
Step 2.3.2
Simplify the numerator.
Step 2.3.2.1
To write 13 as a fraction with a common denominator, multiply by 2n-12n-1.
a=13⋅2n-12n-1+(-1)n3⋅2n-1n
Step 2.3.2.2
Multiply 13 by 2n-12n-1.
a=2n-13⋅2n-1+(-1)n3⋅2n-1n
Step 2.3.2.3
Combine the numerators over the common denominator.
a=2n-1+(-1)n3⋅2n-1n
a=2n-1+(-1)n3⋅2n-1n
Step 2.3.3
Multiply the numerator by the reciprocal of the denominator.
a=2n-1+(-1)n3⋅2n-1⋅1n
Step 2.3.4
Multiply 2n-1+(-1)n3⋅2n-1 by 1n.
a=2n-1+(-1)n3⋅2n-1n
Step 2.3.5
Reorder factors in 2n-1+(-1)n3⋅2n-1n.
a=2n-1+(-1)n3n⋅2n-1
a=2n-1+(-1)n3n⋅2n-1
a=2n-1+(-1)n3n⋅2n-1