Enter a problem...
Finite Math Examples
Step 1
Set equal to .
Step 2
Step 2.1
Factor the left side of the equation.
Step 2.1.1
Regroup terms.
Step 2.1.2
Factor out of .
Step 2.1.2.1
Factor out of .
Step 2.1.2.2
Factor out of .
Step 2.1.2.3
Factor out of .
Step 2.1.3
Rewrite as .
Step 2.1.4
Let . Substitute for all occurrences of .
Step 2.1.5
Factor using the AC method.
Step 2.1.5.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 2.1.5.2
Write the factored form using these integers.
Step 2.1.6
Replace all occurrences of with .
Step 2.1.7
Factor out of .
Step 2.1.7.1
Factor out of .
Step 2.1.7.2
Factor out of .
Step 2.1.8
Let . Substitute for all occurrences of .
Step 2.1.9
Factor using the AC method.
Step 2.1.9.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 2.1.9.2
Write the factored form using these integers.
Step 2.1.10
Factor.
Step 2.1.10.1
Replace all occurrences of with .
Step 2.1.10.2
Remove unnecessary parentheses.
Step 2.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.3
Set equal to and solve for .
Step 2.3.1
Set equal to .
Step 2.3.2
Solve for .
Step 2.3.2.1
Add to both sides of the equation.
Step 2.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2.3.2.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 2.3.2.3.1
First, use the positive value of the to find the first solution.
Step 2.3.2.3.2
Next, use the negative value of the to find the second solution.
Step 2.3.2.3.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 2.4
Set equal to and solve for .
Step 2.4.1
Set equal to .
Step 2.4.2
Add to both sides of the equation.
Step 2.5
Set equal to and solve for .
Step 2.5.1
Set equal to .
Step 2.5.2
Add to both sides of the equation.
Step 2.6
The final solution is all the values that make true. The multiplicity of a root is the number of times the root appears.
(Multiplicity of )
(Multiplicity of )
(Multiplicity of )
(Multiplicity of )
(Multiplicity of )
(Multiplicity of )
(Multiplicity of )
(Multiplicity of )
Step 3