Enter a problem...
Finite Math Examples
−5.1y⋅(7.2y)=−8.4
Step 1
Step 1.1
Simplify the left side.
Step 1.1.1
Simplify −5.1y⋅(7.2y).
Step 1.1.1.1
Rewrite using the commutative property of multiplication.
−5.1⋅7.2y⋅y=−8.4
Step 1.1.1.2
Multiply y by y by adding the exponents.
Step 1.1.1.2.1
Move y.
−5.1⋅7.2(y⋅y)=−8.4
Step 1.1.1.2.2
Multiply y by y.
−5.1⋅7.2y2=−8.4
−5.1⋅7.2y2=−8.4
Step 1.1.1.3
Multiply −5.1 by 7.2.
−36.72y2=−8.4
−36.72y2=−8.4
−36.72y2=−8.4
Step 1.2
Add 8.4 to both sides of the equation.
−36.72y2+8.4=0
−36.72y2+8.4=0
Step 2
Use the quadratic formula to find the solutions.
−b±√b2−4(ac)2a
Step 3
Substitute the values a=−36.72, b=0, and c=8.4 into the quadratic formula and solve for y.
0±√02−4⋅(−36.72⋅8.4)2⋅−36.72
Step 4
Step 4.1
Simplify the numerator.
Step 4.1.1
Raising 0 to any positive power yields 0.
y=0±√0−4⋅−36.72⋅8.42⋅−36.72
Step 4.1.2
Multiply −4⋅−36.72⋅8.4.
Step 4.1.2.1
Multiply −4 by −36.72.
y=0±√0+146.88⋅8.42⋅−36.72
Step 4.1.2.2
Multiply 146.88 by 8.4.
y=0±√0+1233.7922⋅−36.72
y=0±√0+1233.7922⋅−36.72
Step 4.1.3
Add 0 and 1233.792.
y=0±√1233.7922⋅−36.72
y=0±√1233.7922⋅−36.72
Step 4.2
Multiply 2 by −36.72.
y=0±√1233.792−73.44
Step 4.3
Simplify 0±√1233.792−73.44.
y=±√1233.79273.44
Step 4.4
Multiply by 1.
y=1(±√1233.792)73.44
Step 4.5
Factor 73.44 out of 73.44.
y=1(±√1233.792)73.44(1)
Step 4.6
Separate fractions.
y=173.44⋅±√1233.7921
Step 4.7
Divide 1 by 73.44.
y=0.01361655(±√1233.7921)
Step 4.8
Divide ±√1233.792 by 1.
y=0.01361655(±√1233.792)
y=0.01361655(±√1233.792)
Step 5
The result can be shown in multiple forms.
Exact Form:
y=0.01361655(±√1233.792)
Decimal Form:
y=0.47828670…,−0.47828670…