Finite Math Examples

Solve Using the Quadratic Formula -5.1y*(7.2y)=-8.4
5.1y(7.2y)=8.4
Step 1
Move all terms to the left side of the equation and simplify.
Tap for more steps...
Step 1.1
Simplify the left side.
Tap for more steps...
Step 1.1.1
Simplify 5.1y(7.2y).
Tap for more steps...
Step 1.1.1.1
Rewrite using the commutative property of multiplication.
5.17.2yy=8.4
Step 1.1.1.2
Multiply y by y by adding the exponents.
Tap for more steps...
Step 1.1.1.2.1
Move y.
5.17.2(yy)=8.4
Step 1.1.1.2.2
Multiply y by y.
5.17.2y2=8.4
5.17.2y2=8.4
Step 1.1.1.3
Multiply 5.1 by 7.2.
36.72y2=8.4
36.72y2=8.4
36.72y2=8.4
Step 1.2
Add 8.4 to both sides of the equation.
36.72y2+8.4=0
36.72y2+8.4=0
Step 2
Use the quadratic formula to find the solutions.
b±b24(ac)2a
Step 3
Substitute the values a=36.72, b=0, and c=8.4 into the quadratic formula and solve for y.
0±024(36.728.4)236.72
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Raising 0 to any positive power yields 0.
y=0±0436.728.4236.72
Step 4.1.2
Multiply 436.728.4.
Tap for more steps...
Step 4.1.2.1
Multiply 4 by 36.72.
y=0±0+146.888.4236.72
Step 4.1.2.2
Multiply 146.88 by 8.4.
y=0±0+1233.792236.72
y=0±0+1233.792236.72
Step 4.1.3
Add 0 and 1233.792.
y=0±1233.792236.72
y=0±1233.792236.72
Step 4.2
Multiply 2 by 36.72.
y=0±1233.79273.44
Step 4.3
Simplify 0±1233.79273.44.
y=±1233.79273.44
Step 4.4
Multiply by 1.
y=1(±1233.792)73.44
Step 4.5
Factor 73.44 out of 73.44.
y=1(±1233.792)73.44(1)
Step 4.6
Separate fractions.
y=173.44±1233.7921
Step 4.7
Divide 1 by 73.44.
y=0.01361655(±1233.7921)
Step 4.8
Divide ±1233.792 by 1.
y=0.01361655(±1233.792)
y=0.01361655(±1233.792)
Step 5
The result can be shown in multiple forms.
Exact Form:
y=0.01361655(±1233.792)
Decimal Form:
y=0.47828670,0.47828670
 x2  12  π  xdx