Enter a problem...
Finite Math Examples
a(-21-a)=396a(−21−a)=396
Step 1
Step 1.1
Simplify the left side.
Step 1.1.1
Simplify a(-21-a)a(−21−a).
Step 1.1.1.1
Simplify by multiplying through.
Step 1.1.1.1.1
Apply the distributive property.
a⋅-21+a(-a)=396a⋅−21+a(−a)=396
Step 1.1.1.1.2
Reorder.
Step 1.1.1.1.2.1
Move -21−21 to the left of aa.
-21⋅a+a(-a)=396−21⋅a+a(−a)=396
Step 1.1.1.1.2.2
Rewrite using the commutative property of multiplication.
-21⋅a-a⋅a=396−21⋅a−a⋅a=396
-21⋅a-a⋅a=396−21⋅a−a⋅a=396
-21⋅a-a⋅a=396−21⋅a−a⋅a=396
Step 1.1.1.2
Multiply aa by aa by adding the exponents.
Step 1.1.1.2.1
Move aa.
-21a-(a⋅a)=396−21a−(a⋅a)=396
Step 1.1.1.2.2
Multiply aa by aa.
-21a-a2=396−21a−a2=396
-21a-a2=396−21a−a2=396
-21a-a2=396−21a−a2=396
-21a-a2=396−21a−a2=396
Step 1.2
Subtract 396396 from both sides of the equation.
-21a-a2-396=0−21a−a2−396=0
-21a-a2-396=0−21a−a2−396=0
Step 2
The discriminant of a quadratic is the expression inside the radical of the quadratic formula.
b2-4(ac)b2−4(ac)
Step 3
Substitute in the values of aa, bb, and cc.
(-21)2-4(--396)(−21)2−4(−−396)
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Raise -21−21 to the power of 22.
441-4(--396)441−4(−−396)
Step 4.1.2
Multiply -4(--396)−4(−−396).
Step 4.1.2.1
Multiply -1−1 by -396−396.
441-4⋅396441−4⋅396
Step 4.1.2.2
Multiply -4−4 by 396396.
441-1584441−1584
441-1584441−1584
441-1584441−1584
Step 4.2
Subtract 15841584 from 441441.
-1143−1143
-1143−1143