Finite Math Examples

Find the Discriminant a(-21-a)=396
a(-21-a)=396a(21a)=396
Step 1
Move all terms to the left side of the equation and simplify.
Tap for more steps...
Step 1.1
Simplify the left side.
Tap for more steps...
Step 1.1.1
Simplify a(-21-a)a(21a).
Tap for more steps...
Step 1.1.1.1
Simplify by multiplying through.
Tap for more steps...
Step 1.1.1.1.1
Apply the distributive property.
a-21+a(-a)=396a21+a(a)=396
Step 1.1.1.1.2
Reorder.
Tap for more steps...
Step 1.1.1.1.2.1
Move -2121 to the left of aa.
-21a+a(-a)=39621a+a(a)=396
Step 1.1.1.1.2.2
Rewrite using the commutative property of multiplication.
-21a-aa=39621aaa=396
-21a-aa=39621aaa=396
-21a-aa=39621aaa=396
Step 1.1.1.2
Multiply aa by aa by adding the exponents.
Tap for more steps...
Step 1.1.1.2.1
Move aa.
-21a-(aa)=39621a(aa)=396
Step 1.1.1.2.2
Multiply aa by aa.
-21a-a2=39621aa2=396
-21a-a2=39621aa2=396
-21a-a2=39621aa2=396
-21a-a2=39621aa2=396
Step 1.2
Subtract 396396 from both sides of the equation.
-21a-a2-396=021aa2396=0
-21a-a2-396=021aa2396=0
Step 2
The discriminant of a quadratic is the expression inside the radical of the quadratic formula.
b2-4(ac)b24(ac)
Step 3
Substitute in the values of aa, bb, and cc.
(-21)2-4(--396)(21)24(396)
Step 4
Evaluate the result to find the discriminant.
Tap for more steps...
Step 4.1
Simplify each term.
Tap for more steps...
Step 4.1.1
Raise -2121 to the power of 22.
441-4(--396)4414(396)
Step 4.1.2
Multiply -4(--396)4(396).
Tap for more steps...
Step 4.1.2.1
Multiply -11 by -396396.
441-43964414396
Step 4.1.2.2
Multiply -44 by 396396.
441-15844411584
441-15844411584
441-15844411584
Step 4.2
Subtract 15841584 from 441441.
-11431143
-11431143
 [x2  12  π  xdx ]  x2  12  π  xdx