Finite Math Examples

Solve Using the Quadratic Formula m^(2/3)+3m^(1/3)+8=0
Step 1
Find a common factor that is present in each term.
Step 2
Substitute for .
Step 3
Solve for .
Tap for more steps...
Step 3.1
Multiply by .
Step 3.2
Use the quadratic formula to find the solutions.
Step 3.3
Substitute the values , , and into the quadratic formula and solve for .
Step 3.4
Simplify.
Tap for more steps...
Step 3.4.1
Simplify the numerator.
Tap for more steps...
Step 3.4.1.1
Raise to the power of .
Step 3.4.1.2
Multiply .
Tap for more steps...
Step 3.4.1.2.1
Multiply by .
Step 3.4.1.2.2
Multiply by .
Step 3.4.1.3
Subtract from .
Step 3.4.1.4
Rewrite as .
Step 3.4.1.5
Rewrite as .
Step 3.4.1.6
Rewrite as .
Step 3.4.2
Multiply by .
Step 3.5
The final answer is the combination of both solutions.
Step 4
Substitute for .
Step 5
Solve for for .
Tap for more steps...
Step 5.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 5.2
Simplify the exponent.
Tap for more steps...
Step 5.2.1
Simplify the left side.
Tap for more steps...
Step 5.2.1.1
Simplify .
Tap for more steps...
Step 5.2.1.1.1
Multiply the exponents in .
Tap for more steps...
Step 5.2.1.1.1.1
Apply the power rule and multiply exponents, .
Step 5.2.1.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 5.2.1.1.1.2.1
Cancel the common factor.
Step 5.2.1.1.1.2.2
Rewrite the expression.
Step 5.2.1.1.2
Simplify.
Step 5.2.2
Simplify the right side.
Tap for more steps...
Step 5.2.2.1
Simplify .
Tap for more steps...
Step 5.2.2.1.1
Use the power rule to distribute the exponent.
Tap for more steps...
Step 5.2.2.1.1.1
Apply the product rule to .
Step 5.2.2.1.1.2
Apply the product rule to .
Step 5.2.2.1.2
Evaluate the exponents.
Tap for more steps...
Step 5.2.2.1.2.1
Raise to the power of .
Step 5.2.2.1.2.2
Raise to the power of .
Step 5.2.2.1.3
Use the Binomial Theorem.
Step 5.2.2.1.4
Simplify terms.
Tap for more steps...
Step 5.2.2.1.4.1
Simplify each term.
Tap for more steps...
Step 5.2.2.1.4.1.1
Raise to the power of .
Step 5.2.2.1.4.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 5.2.2.1.4.1.2.1
Multiply by .
Tap for more steps...
Step 5.2.2.1.4.1.2.1.1
Raise to the power of .
Step 5.2.2.1.4.1.2.1.2
Use the power rule to combine exponents.
Step 5.2.2.1.4.1.2.2
Add and .
Step 5.2.2.1.4.1.3
Raise to the power of .
Step 5.2.2.1.4.1.4
Multiply by .
Step 5.2.2.1.4.1.5
Multiply by .
Step 5.2.2.1.4.1.6
Use the power rule to distribute the exponent.
Tap for more steps...
Step 5.2.2.1.4.1.6.1
Apply the product rule to .
Step 5.2.2.1.4.1.6.2
Apply the product rule to .
Step 5.2.2.1.4.1.7
Raise to the power of .
Step 5.2.2.1.4.1.8
Multiply by .
Step 5.2.2.1.4.1.9
Rewrite as .
Step 5.2.2.1.4.1.10
Rewrite as .
Tap for more steps...
Step 5.2.2.1.4.1.10.1
Use to rewrite as .
Step 5.2.2.1.4.1.10.2
Apply the power rule and multiply exponents, .
Step 5.2.2.1.4.1.10.3
Combine and .
Step 5.2.2.1.4.1.10.4
Cancel the common factor of .
Tap for more steps...
Step 5.2.2.1.4.1.10.4.1
Cancel the common factor.
Step 5.2.2.1.4.1.10.4.2
Rewrite the expression.
Step 5.2.2.1.4.1.10.5
Evaluate the exponent.
Step 5.2.2.1.4.1.11
Multiply .
Tap for more steps...
Step 5.2.2.1.4.1.11.1
Multiply by .
Step 5.2.2.1.4.1.11.2
Multiply by .
Step 5.2.2.1.4.1.12
Use the power rule to distribute the exponent.
Tap for more steps...
Step 5.2.2.1.4.1.12.1
Apply the product rule to .
Step 5.2.2.1.4.1.12.2
Apply the product rule to .
Step 5.2.2.1.4.1.13
Raise to the power of .
Step 5.2.2.1.4.1.14
Factor out .
Step 5.2.2.1.4.1.15
Rewrite as .
Step 5.2.2.1.4.1.16
Rewrite as .
Step 5.2.2.1.4.1.17
Multiply by .
Step 5.2.2.1.4.1.18
Multiply by .
Step 5.2.2.1.4.1.19
Rewrite as .
Step 5.2.2.1.4.1.20
Raise to the power of .
Step 5.2.2.1.4.1.21
Rewrite as .
Tap for more steps...
Step 5.2.2.1.4.1.21.1
Factor out of .
Step 5.2.2.1.4.1.21.2
Rewrite as .
Step 5.2.2.1.4.1.22
Pull terms out from under the radical.
Step 5.2.2.1.4.1.23
Move to the left of .
Step 5.2.2.1.4.2
Simplify terms.
Tap for more steps...
Step 5.2.2.1.4.2.1
Subtract from .
Step 5.2.2.1.4.2.2
Add and .
Step 5.2.2.1.4.2.3
Reorder and .
Step 5.2.2.1.4.2.4
Cancel the common factor of and .
Tap for more steps...
Step 5.2.2.1.4.2.4.1
Factor out of .
Step 5.2.2.1.4.2.4.2
Factor out of .
Step 5.2.2.1.4.2.4.3
Factor out of .
Step 5.2.2.1.4.2.4.4
Cancel the common factors.
Tap for more steps...
Step 5.2.2.1.4.2.4.4.1
Factor out of .
Step 5.2.2.1.4.2.4.4.2
Cancel the common factor.
Step 5.2.2.1.4.2.4.4.3
Rewrite the expression.
Step 5.2.2.1.4.2.5
Rewrite as .
Step 5.2.2.1.4.2.6
Factor out of .
Step 5.2.2.1.4.2.7
Factor out of .
Step 5.2.2.1.4.2.8
Simplify the expression.
Tap for more steps...
Step 5.2.2.1.4.2.8.1
Move the negative in front of the fraction.
Step 5.2.2.1.4.2.8.2
Multiply by .
Step 5.2.2.1.4.2.8.3
Multiply by .
Step 6
Solve for for .
Tap for more steps...
Step 6.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 6.2
Simplify the exponent.
Tap for more steps...
Step 6.2.1
Simplify the left side.
Tap for more steps...
Step 6.2.1.1
Simplify .
Tap for more steps...
Step 6.2.1.1.1
Multiply the exponents in .
Tap for more steps...
Step 6.2.1.1.1.1
Apply the power rule and multiply exponents, .
Step 6.2.1.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 6.2.1.1.1.2.1
Cancel the common factor.
Step 6.2.1.1.1.2.2
Rewrite the expression.
Step 6.2.1.1.2
Simplify.
Step 6.2.2
Simplify the right side.
Tap for more steps...
Step 6.2.2.1
Simplify .
Tap for more steps...
Step 6.2.2.1.1
Use the power rule to distribute the exponent.
Tap for more steps...
Step 6.2.2.1.1.1
Apply the product rule to .
Step 6.2.2.1.1.2
Apply the product rule to .
Step 6.2.2.1.2
Evaluate the exponents.
Tap for more steps...
Step 6.2.2.1.2.1
Raise to the power of .
Step 6.2.2.1.2.2
Raise to the power of .
Step 6.2.2.1.3
Use the Binomial Theorem.
Step 6.2.2.1.4
Simplify terms.
Tap for more steps...
Step 6.2.2.1.4.1
Simplify each term.
Tap for more steps...
Step 6.2.2.1.4.1.1
Raise to the power of .
Step 6.2.2.1.4.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 6.2.2.1.4.1.2.1
Multiply by .
Tap for more steps...
Step 6.2.2.1.4.1.2.1.1
Raise to the power of .
Step 6.2.2.1.4.1.2.1.2
Use the power rule to combine exponents.
Step 6.2.2.1.4.1.2.2
Add and .
Step 6.2.2.1.4.1.3
Raise to the power of .
Step 6.2.2.1.4.1.4
Multiply by .
Step 6.2.2.1.4.1.5
Apply the product rule to .
Step 6.2.2.1.4.1.6
Rewrite as .
Step 6.2.2.1.4.1.7
Rewrite as .
Tap for more steps...
Step 6.2.2.1.4.1.7.1
Use to rewrite as .
Step 6.2.2.1.4.1.7.2
Apply the power rule and multiply exponents, .
Step 6.2.2.1.4.1.7.3
Combine and .
Step 6.2.2.1.4.1.7.4
Cancel the common factor of .
Tap for more steps...
Step 6.2.2.1.4.1.7.4.1
Cancel the common factor.
Step 6.2.2.1.4.1.7.4.2
Rewrite the expression.
Step 6.2.2.1.4.1.7.5
Evaluate the exponent.
Step 6.2.2.1.4.1.8
Multiply .
Tap for more steps...
Step 6.2.2.1.4.1.8.1
Multiply by .
Step 6.2.2.1.4.1.8.2
Multiply by .
Step 6.2.2.1.4.1.9
Apply the product rule to .
Step 6.2.2.1.4.1.10
Factor out .
Step 6.2.2.1.4.1.11
Rewrite as .
Step 6.2.2.1.4.1.12
Rewrite as .
Step 6.2.2.1.4.1.13
Rewrite as .
Step 6.2.2.1.4.1.14
Raise to the power of .
Step 6.2.2.1.4.1.15
Rewrite as .
Tap for more steps...
Step 6.2.2.1.4.1.15.1
Factor out of .
Step 6.2.2.1.4.1.15.2
Rewrite as .
Step 6.2.2.1.4.1.16
Pull terms out from under the radical.
Step 6.2.2.1.4.1.17
Multiply by .
Step 6.2.2.1.4.2
Simplify terms.
Tap for more steps...
Step 6.2.2.1.4.2.1
Subtract from .
Step 6.2.2.1.4.2.2
Subtract from .
Step 6.2.2.1.4.2.3
Reorder and .
Step 6.2.2.1.4.2.4
Cancel the common factor of and .
Tap for more steps...
Step 6.2.2.1.4.2.4.1
Factor out of .
Step 6.2.2.1.4.2.4.2
Factor out of .
Step 6.2.2.1.4.2.4.3
Factor out of .
Step 6.2.2.1.4.2.4.4
Cancel the common factors.
Tap for more steps...
Step 6.2.2.1.4.2.4.4.1
Factor out of .
Step 6.2.2.1.4.2.4.4.2
Cancel the common factor.
Step 6.2.2.1.4.2.4.4.3
Rewrite the expression.
Step 6.2.2.1.4.2.5
Rewrite as .
Step 6.2.2.1.4.2.6
Factor out of .
Step 6.2.2.1.4.2.7
Factor out of .
Step 6.2.2.1.4.2.8
Simplify the expression.
Tap for more steps...
Step 6.2.2.1.4.2.8.1
Move the negative in front of the fraction.
Step 6.2.2.1.4.2.8.2
Multiply by .
Step 6.2.2.1.4.2.8.3
Multiply by .
Step 7
List all of the solutions.