Finite Math Examples

Write as a Set of Linear Factors a^2+b^2=484
a2+b2=484a2+b2=484
Step 1
Subtract 484484 from both sides of the equation.
a2+b2-484=0a2+b2484=0
Step 2
Factor a2+b2-484a2+b2484 over the complex numbers.
Tap for more steps...
Step 2.1
Use the quadratic formula to find the roots for a2+b2-484=0a2+b2484=0
Tap for more steps...
Step 2.1.1
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a=0b±b24(ac)2a=0
Step 2.1.2
Substitute the values a=1a=1, b=0b=0, and c=b2-484c=b2484 into the quadratic formula and solve for aa.
0±02-4(1(b2-484))21=00±024(1(b2484))21=0
Step 2.1.3
Simplify.
Tap for more steps...
Step 2.1.3.1
Simplify the numerator.
Tap for more steps...
Step 2.1.3.1.1
Raising 00 to any positive power yields 00.
a=0±0-41(b2-484)21a=0±041(b2484)21
Step 2.1.3.1.2
Multiply -44 by 11.
a=0±0-4(b2-484)21a=0±04(b2484)21
Step 2.1.3.1.3
Apply the distributive property.
a=0±0-4b2-4-48421a=0±04b2448421
Step 2.1.3.1.4
Multiply -44 by -484484.
a=0±0-4b2+193621a=0±04b2+193621
Step 2.1.3.1.5
Subtract -(-4b2+1936)(4b2+1936) from 00.
a=0±-4b2+193621a=0±4b2+193621
Step 2.1.3.1.6
Rewrite -4b2+19364b2+1936 in a factored form.
Tap for more steps...
Step 2.1.3.1.6.1
Factor 44 out of -4b2+19364b2+1936.
Tap for more steps...
Step 2.1.3.1.6.1.1
Factor 44 out of -4b24b2.
a=0±4(-b2)+193621a=0±4(b2)+193621
Step 2.1.3.1.6.1.2
Factor 44 out of 19361936.
a=0±4(-b2)+4(484)21a=0±4(b2)+4(484)21
Step 2.1.3.1.6.1.3
Factor 44 out of 4(-b2)+4(484)4(b2)+4(484).
a=0±4(-b2+484)21a=0±4(b2+484)21
a=0±4(-b2+484)21a=0±4(b2+484)21
Step 2.1.3.1.6.2
Rewrite 484484 as 222222.
a=0±4(-b2+222)21a=0±4(b2+222)21
Step 2.1.3.1.6.3
Reorder -b2b2 and 222222.
a=0±4(222-b2)21a=0±4(222b2)21
Step 2.1.3.1.6.4
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=22a=22 and b=bb=b.
a=0±4(22+b)(22-b)21a=0±4(22+b)(22b)21
a=0±4(22+b)(22-b)21a=0±4(22+b)(22b)21
Step 2.1.3.1.7
Rewrite 4(22+b)(22-b)4(22+b)(22b) as 22((22+b)(22-b))22((22+b)(22b)).
Tap for more steps...
Step 2.1.3.1.7.1
Rewrite 44 as 2222.
a=0±22(22+b)(22-b)21a=0±22(22+b)(22b)21
Step 2.1.3.1.7.2
Add parentheses.
a=0±22((22+b)(22-b))21a=0±22((22+b)(22b))21
a=0±22((22+b)(22-b))21a=0±22((22+b)(22b))21
Step 2.1.3.1.8
Pull terms out from under the radical.
a=0±2(22+b)(22-b)21a=0±2(22+b)(22b)21
a=0±2(22+b)(22-b)21a=0±2(22+b)(22b)21
Step 2.1.3.2
Multiply 22 by 11.
a=0±2(22+b)(22-b)2a=0±2(22+b)(22b)2
Step 2.1.3.3
Simplify 0±2(22+b)(22-b)20±2(22+b)(22b)2.
a=±(22+b)(22-b)a=±(22+b)(22b)
a=±(22+b)(22-b)
a=±(22+b)(22-b)
Step 2.2
Find the factors from the roots, then multiply the factors together.
(a-(22+b)(22-b))(a-(-(22+b)(22-b)))=0
Step 2.3
Simplify the factored form.
(a-(22+b)(22-b))(a+(22+b)(22-b))=0
(a-(22+b)(22-b))(a+(22+b)(22-b))=0
 [x2  12  π  xdx ]