Enter a problem...
Finite Math Examples
a2+b2=484a2+b2=484
Step 1
Subtract 484484 from both sides of the equation.
a2+b2-484=0a2+b2−484=0
Step 2
Step 2.1
Use the quadratic formula to find the roots for a2+b2-484=0a2+b2−484=0
Step 2.1.1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a=0−b±√b2−4(ac)2a=0
Step 2.1.2
Substitute the values a=1a=1, b=0b=0, and c=b2-484c=b2−484 into the quadratic formula and solve for aa.
0±√02-4⋅(1⋅(b2-484))2⋅1=00±√02−4⋅(1⋅(b2−484))2⋅1=0
Step 2.1.3
Simplify.
Step 2.1.3.1
Simplify the numerator.
Step 2.1.3.1.1
Raising 00 to any positive power yields 00.
a=0±√0-4⋅1⋅(b2-484)2⋅1a=0±√0−4⋅1⋅(b2−484)2⋅1
Step 2.1.3.1.2
Multiply -4−4 by 11.
a=0±√0-4⋅(b2-484)2⋅1a=0±√0−4⋅(b2−484)2⋅1
Step 2.1.3.1.3
Apply the distributive property.
a=0±√0-4b2-4⋅-4842⋅1a=0±√0−4b2−4⋅−4842⋅1
Step 2.1.3.1.4
Multiply -4−4 by -484−484.
a=0±√0-4b2+19362⋅1a=0±√0−4b2+19362⋅1
Step 2.1.3.1.5
Subtract -(-4b2+1936)−(−4b2+1936) from 00.
a=0±√-4b2+19362⋅1a=0±√−4b2+19362⋅1
Step 2.1.3.1.6
Rewrite -4b2+1936−4b2+1936 in a factored form.
Step 2.1.3.1.6.1
Factor 44 out of -4b2+1936−4b2+1936.
Step 2.1.3.1.6.1.1
Factor 44 out of -4b2−4b2.
a=0±√4(-b2)+19362⋅1a=0±√4(−b2)+19362⋅1
Step 2.1.3.1.6.1.2
Factor 44 out of 19361936.
a=0±√4(-b2)+4(484)2⋅1a=0±√4(−b2)+4(484)2⋅1
Step 2.1.3.1.6.1.3
Factor 44 out of 4(-b2)+4(484)4(−b2)+4(484).
a=0±√4(-b2+484)2⋅1a=0±√4(−b2+484)2⋅1
a=0±√4(-b2+484)2⋅1a=0±√4(−b2+484)2⋅1
Step 2.1.3.1.6.2
Rewrite 484484 as 222222.
a=0±√4(-b2+222)2⋅1a=0±√4(−b2+222)2⋅1
Step 2.1.3.1.6.3
Reorder -b2−b2 and 222222.
a=0±√4(222-b2)2⋅1a=0±√4(222−b2)2⋅1
Step 2.1.3.1.6.4
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=22a=22 and b=bb=b.
a=0±√4(22+b)(22-b)2⋅1a=0±√4(22+b)(22−b)2⋅1
a=0±√4(22+b)(22-b)2⋅1a=0±√4(22+b)(22−b)2⋅1
Step 2.1.3.1.7
Rewrite 4(22+b)(22-b)4(22+b)(22−b) as 22((22+b)(22-b))22((22+b)(22−b)).
Step 2.1.3.1.7.1
Rewrite 44 as 2222.
a=0±√22(22+b)(22-b)2⋅1a=0±√22(22+b)(22−b)2⋅1
Step 2.1.3.1.7.2
Add parentheses.
a=0±√22((22+b)(22-b))2⋅1a=0±√22((22+b)(22−b))2⋅1
a=0±√22((22+b)(22-b))2⋅1a=0±√22((22+b)(22−b))2⋅1
Step 2.1.3.1.8
Pull terms out from under the radical.
a=0±2√(22+b)(22-b)2⋅1a=0±2√(22+b)(22−b)2⋅1
a=0±2√(22+b)(22-b)2⋅1a=0±2√(22+b)(22−b)2⋅1
Step 2.1.3.2
Multiply 22 by 11.
a=0±2√(22+b)(22-b)2a=0±2√(22+b)(22−b)2
Step 2.1.3.3
Simplify 0±2√(22+b)(22-b)20±2√(22+b)(22−b)2.
a=±√(22+b)(22-b)a=±√(22+b)(22−b)
a=±√(22+b)(22-b)
a=±√(22+b)(22-b)
Step 2.2
Find the factors from the roots, then multiply the factors together.
(a-√(22+b)(22-b))(a-(-√(22+b)(22-b)))=0
Step 2.3
Simplify the factored form.
(a-√(22+b)(22-b))(a+√(22+b)(22-b))=0
(a-√(22+b)(22-b))(a+√(22+b)(22-b))=0