Enter a problem...
Finite Math Examples
Step 1
Step 1.1
To find the x-intercept(s), substitute in for and solve for .
Step 1.2
Solve the equation.
Step 1.2.1
Rewrite the equation as .
Step 1.2.2
Multiply both sides of the equation by .
Step 1.2.3
Simplify both sides of the equation.
Step 1.2.3.1
Simplify the left side.
Step 1.2.3.1.1
Simplify .
Step 1.2.3.1.1.1
Apply the distributive property.
Step 1.2.3.1.1.2
Simplify the expression.
Step 1.2.3.1.1.2.1
Multiply by .
Step 1.2.3.1.1.2.2
Move to the left of .
Step 1.2.3.1.1.3
Apply the distributive property.
Step 1.2.3.1.1.4
Combine and .
Step 1.2.3.1.1.5
Multiply .
Step 1.2.3.1.1.5.1
Combine and .
Step 1.2.3.1.1.5.2
Multiply by .
Step 1.2.3.1.1.5.3
Combine and .
Step 1.2.3.1.1.6
Simplify terms.
Step 1.2.3.1.1.6.1
Move the negative in front of the fraction.
Step 1.2.3.1.1.6.2
Apply the distributive property.
Step 1.2.3.1.1.6.3
Combine.
Step 1.2.3.1.1.6.4
Cancel the common factor of .
Step 1.2.3.1.1.6.4.1
Move the leading negative in into the numerator.
Step 1.2.3.1.1.6.4.2
Cancel the common factor.
Step 1.2.3.1.1.6.4.3
Rewrite the expression.
Step 1.2.3.1.1.6.5
Cancel the common factor of .
Step 1.2.3.1.1.6.5.1
Factor out of .
Step 1.2.3.1.1.6.5.2
Cancel the common factor.
Step 1.2.3.1.1.6.5.3
Rewrite the expression.
Step 1.2.3.1.1.7
Simplify each term.
Step 1.2.3.1.1.7.1
Cancel the common factor of .
Step 1.2.3.1.1.7.1.1
Cancel the common factor.
Step 1.2.3.1.1.7.1.2
Rewrite the expression.
Step 1.2.3.1.1.7.2
Cancel the common factor of .
Step 1.2.3.1.1.7.2.1
Cancel the common factor.
Step 1.2.3.1.1.7.2.2
Divide by .
Step 1.2.3.2
Simplify the right side.
Step 1.2.3.2.1
Simplify .
Step 1.2.3.2.1.1
Subtract from .
Step 1.2.3.2.1.2
Cancel the common factor of .
Step 1.2.3.2.1.2.1
Factor out of .
Step 1.2.3.2.1.2.2
Factor out of .
Step 1.2.3.2.1.2.3
Cancel the common factor.
Step 1.2.3.2.1.2.4
Rewrite the expression.
Step 1.2.3.2.1.3
Combine and .
Step 1.2.3.2.1.4
Simplify the expression.
Step 1.2.3.2.1.4.1
Multiply by .
Step 1.2.3.2.1.4.2
Move the negative in front of the fraction.
Step 1.2.4
Add to both sides of the equation.
Step 1.2.5
Multiply through by the least common denominator , then simplify.
Step 1.2.5.1
Apply the distributive property.
Step 1.2.5.2
Simplify.
Step 1.2.5.2.1
Multiply by .
Step 1.2.5.2.2
Cancel the common factor of .
Step 1.2.5.2.2.1
Cancel the common factor.
Step 1.2.5.2.2.2
Rewrite the expression.
Step 1.2.6
Use the quadratic formula to find the solutions.
Step 1.2.7
Substitute the values , , and into the quadratic formula and solve for .
Step 1.2.8
Simplify.
Step 1.2.8.1
Simplify the numerator.
Step 1.2.8.1.1
Raise to the power of .
Step 1.2.8.1.2
Multiply .
Step 1.2.8.1.2.1
Multiply by .
Step 1.2.8.1.2.2
Multiply by .
Step 1.2.8.1.3
Subtract from .
Step 1.2.8.1.4
Rewrite as .
Step 1.2.8.1.4.1
Factor out of .
Step 1.2.8.1.4.2
Rewrite as .
Step 1.2.8.1.5
Pull terms out from under the radical.
Step 1.2.8.2
Multiply by .
Step 1.2.8.3
Simplify .
Step 1.2.9
Simplify the expression to solve for the portion of the .
Step 1.2.9.1
Simplify the numerator.
Step 1.2.9.1.1
Raise to the power of .
Step 1.2.9.1.2
Multiply .
Step 1.2.9.1.2.1
Multiply by .
Step 1.2.9.1.2.2
Multiply by .
Step 1.2.9.1.3
Subtract from .
Step 1.2.9.1.4
Rewrite as .
Step 1.2.9.1.4.1
Factor out of .
Step 1.2.9.1.4.2
Rewrite as .
Step 1.2.9.1.5
Pull terms out from under the radical.
Step 1.2.9.2
Multiply by .
Step 1.2.9.3
Simplify .
Step 1.2.9.4
Change the to .
Step 1.2.10
Simplify the expression to solve for the portion of the .
Step 1.2.10.1
Simplify the numerator.
Step 1.2.10.1.1
Raise to the power of .
Step 1.2.10.1.2
Multiply .
Step 1.2.10.1.2.1
Multiply by .
Step 1.2.10.1.2.2
Multiply by .
Step 1.2.10.1.3
Subtract from .
Step 1.2.10.1.4
Rewrite as .
Step 1.2.10.1.4.1
Factor out of .
Step 1.2.10.1.4.2
Rewrite as .
Step 1.2.10.1.5
Pull terms out from under the radical.
Step 1.2.10.2
Multiply by .
Step 1.2.10.3
Simplify .
Step 1.2.10.4
Change the to .
Step 1.2.11
The final answer is the combination of both solutions.
Step 1.3
x-intercept(s) in point form.
x-intercept(s):
x-intercept(s):
Step 2
Step 2.1
To find the y-intercept(s), substitute in for and solve for .
Step 2.2
Solve the equation.
Step 2.2.1
Simplify .
Step 2.2.1.1
Cancel the common factor of .
Step 2.2.1.1.1
Factor out of .
Step 2.2.1.1.2
Cancel the common factor.
Step 2.2.1.1.3
Rewrite the expression.
Step 2.2.1.2
Multiply by zero.
Step 2.2.1.2.1
Multiply by .
Step 2.2.1.2.2
Multiply by .
Step 2.2.2
Add to both sides of the equation.
Step 2.3
y-intercept(s) in point form.
y-intercept(s):
y-intercept(s):
Step 3
List the intersections.
x-intercept(s):
y-intercept(s):
Step 4