Enter a problem...
Finite Math Examples
√34÷(1-25)2-47⋅12+14⋅5
Step 1
Step 1.1
Write 1 as a fraction with a common denominator.
√34÷(55-25)2-47⋅12+14⋅5
Step 1.2
Combine the numerators over the common denominator.
√34÷(5-25)2-47⋅12+14⋅5
Step 1.3
Subtract 2 from 5.
√34÷(35)2-47⋅12+14⋅5
Step 1.4
Apply the product rule to 35.
√34÷3252-47⋅12+14⋅5
Step 1.5
To divide by a fraction, multiply by its reciprocal.
√34⋅5232-47⋅12+14⋅5
Step 1.6
Combine.
√3⋅524⋅32-47⋅12+14⋅5
Step 1.7
Cancel the common factor of 3 and 32.
Step 1.7.1
Factor 3 out of 3⋅52.
√3(52)4⋅32-47⋅12+14⋅5
Step 1.7.2
Cancel the common factors.
Step 1.7.2.1
Factor 3 out of 4⋅32.
√3(52)3(4⋅3)-47⋅12+14⋅5
Step 1.7.2.2
Cancel the common factor.
√3⋅523(4⋅3)-47⋅12+14⋅5
Step 1.7.2.3
Rewrite the expression.
√524⋅3-47⋅12+14⋅5
√524⋅3-47⋅12+14⋅5
√524⋅3-47⋅12+14⋅5
Step 1.8
Raise 5 to the power of 2.
√254⋅3-47⋅12+14⋅5
Step 1.9
Multiply 4 by 3.
√2512-47⋅12+14⋅5
Step 1.10
Rewrite √2512 as √25√12.
√25√12-47⋅12+14⋅5
Step 1.11
Simplify the numerator.
Step 1.11.1
Rewrite 25 as 52.
√52√12-47⋅12+14⋅5
Step 1.11.2
Pull terms out from under the radical, assuming positive real numbers.
5√12-47⋅12+14⋅5
5√12-47⋅12+14⋅5
Step 1.12
Simplify the denominator.
Step 1.12.1
Rewrite 12 as 22⋅3.
Step 1.12.1.1
Factor 4 out of 12.
5√4(3)-47⋅12+14⋅5
Step 1.12.1.2
Rewrite 4 as 22.
5√22⋅3-47⋅12+14⋅5
5√22⋅3-47⋅12+14⋅5
Step 1.12.2
Pull terms out from under the radical.
52√3-47⋅12+14⋅5
52√3-47⋅12+14⋅5
Step 1.13
Multiply 52√3 by √3√3.
52√3⋅√3√3-47⋅12+14⋅5
Step 1.14
Combine and simplify the denominator.
Step 1.14.1
Multiply 52√3 by √3√3.
5√32√3√3-47⋅12+14⋅5
Step 1.14.2
Move √3.
5√32(√3√3)-47⋅12+14⋅5
Step 1.14.3
Raise √3 to the power of 1.
5√32(√31√3)-47⋅12+14⋅5
Step 1.14.4
Raise √3 to the power of 1.
5√32(√31√31)-47⋅12+14⋅5
Step 1.14.5
Use the power rule aman=am+n to combine exponents.
5√32√31+1-47⋅12+14⋅5
Step 1.14.6
Add 1 and 1.
5√32√32-47⋅12+14⋅5
Step 1.14.7
Rewrite √32 as 3.
Step 1.14.7.1
Use n√ax=axn to rewrite √3 as 312.
5√32(312)2-47⋅12+14⋅5
Step 1.14.7.2
Apply the power rule and multiply exponents, (am)n=amn.
5√32⋅312⋅2-47⋅12+14⋅5
Step 1.14.7.3
Combine 12 and 2.
5√32⋅322-47⋅12+14⋅5
Step 1.14.7.4
Cancel the common factor of 2.
Step 1.14.7.4.1
Cancel the common factor.
5√32⋅322-47⋅12+14⋅5
Step 1.14.7.4.2
Rewrite the expression.
5√32⋅31-47⋅12+14⋅5
5√32⋅31-47⋅12+14⋅5
Step 1.14.7.5
Evaluate the exponent.
5√32⋅3-47⋅12+14⋅5
5√32⋅3-47⋅12+14⋅5
5√32⋅3-47⋅12+14⋅5
Step 1.15
Multiply 2 by 3.
5√36-47⋅12+14⋅5
Step 1.16
Cancel the common factor of 2.
Step 1.16.1
Move the leading negative in -47 into the numerator.
5√36+-47⋅12+14⋅5
Step 1.16.2
Factor 2 out of -4.
5√36+2(-2)7⋅12+14⋅5
Step 1.16.3
Cancel the common factor.
5√36+2⋅-27⋅12+14⋅5
Step 1.16.4
Rewrite the expression.
5√36+-27+14⋅5
5√36+-27+14⋅5
Step 1.17
Move the negative in front of the fraction.
5√36-27+14⋅5
Step 1.18
Combine 14 and 5.
5√36-27+54
5√36-27+54
Step 2
To write -27 as a fraction with a common denominator, multiply by 44.
5√36-27⋅44+54
Step 3
To write 54 as a fraction with a common denominator, multiply by 77.
5√36-27⋅44+54⋅77
Step 4
Step 4.1
Multiply 27 by 44.
5√36-2⋅47⋅4+54⋅77
Step 4.2
Multiply 7 by 4.
5√36-2⋅428+54⋅77
Step 4.3
Multiply 54 by 77.
5√36-2⋅428+5⋅74⋅7
Step 4.4
Multiply 4 by 7.
5√36-2⋅428+5⋅728
5√36-2⋅428+5⋅728
Step 5
Combine the numerators over the common denominator.
5√36+-2⋅4+5⋅728
Step 6
Step 6.1
Multiply -2 by 4.
5√36+-8+5⋅728
Step 6.2
Multiply 5 by 7.
5√36+-8+3528
Step 6.3
Add -8 and 35.
5√36+2728
5√36+2728
Step 7
Step 7.1
Factor out the GCF of 12 from each term in the polynomial.
Step 7.1.1
Factor out the GCF of 12 from the expression 5√36.
1(5√33)2+2728
Step 7.1.2
Factor out the GCF of 12 from the expression 2728.
1(5√33)2+1(2714)2
1(5√33)2+1(2714)2
Step 7.2
Since all the terms share a common factor of 12, it can be factored out of each term.
1(5√33+2714)2
1(5√33+2714)2
Step 8
The polynomial cannot be factored using the specified method. Try a different method, or if you aren't sure, choose Factor.
The polynomial cannot be factored using the specified method.