Finite Math Examples

Evaluate Using the Given Value An, An=1300(1-((1+0.04)^-30)/0.04)
An, An=1300(1-(1+0.04)-300.04)An=1300(1(1+0.04)300.04)
Step 1
Simplify.
Tap for more steps...
Step 1.1
Move (1+0.04)-30(1+0.04)30 to the denominator using the negative exponent rule b-n=1bnbn=1bn.
An=1300(1-10.04(1+0.04)30)An=1300(110.04(1+0.04)30)
Step 1.2
Multiply 0.040.04 by (1+0.04)30(1+0.04)30.
An=1300(1-10.1297359)An=1300(110.1297359)
Step 1.3
Divide 11 by 0.12973590.1297359.
An=1300(1-17.70796669)An=1300(117.70796669)
Step 1.4
Multiply -11 by 7.707966697.70796669.
An=1300(1-7.70796669)An=1300(17.70796669)
Step 1.5
Subtract 7.707966697.70796669 from 11.
An=1300-6.70796669An=13006.70796669
Step 1.6
Multiply 13001300 by -6.707966696.70796669.
An=-8720.35670913An=8720.35670913
An=-8720.35670913An=8720.35670913
Step 2
Divide each term in An=-8720.35670913An=8720.35670913 by nn and simplify.
Tap for more steps...
Step 2.1
Divide each term in An=-8720.35670913An=8720.35670913 by nn.
Ann=-8720.35670913nAnn=8720.35670913n
Step 2.2
Simplify the left side.
Tap for more steps...
Step 2.2.1
Cancel the common factor of nn.
Tap for more steps...
Step 2.2.1.1
Cancel the common factor.
Ann=-8720.35670913n
Step 2.2.1.2
Divide A by 1.
A=-8720.35670913n
A=-8720.35670913n
A=-8720.35670913n
Step 2.3
Simplify the right side.
Tap for more steps...
Step 2.3.1
Move the negative in front of the fraction.
A=-8720.35670913n
A=-8720.35670913n
A=-8720.35670913n
Step 3
Take the base solution.
A=
 [x2  12  π  xdx ]