Finite Math Examples

Find the Degree 2(-5/11)( square root of 96/11)
2(-511)(9611)
Step 1
Simplify and reorder the polynomial.
Tap for more steps...
Step 1.1
Multiply 2(-511).
Tap for more steps...
Step 1.1.1
Multiply -1 by 2.
-2(511)9611
Step 1.1.2
Combine -2 and 511.
-25119611
Step 1.1.3
Multiply -2 by 5.
-10119611
-10119611
Step 1.2
Move the negative in front of the fraction.
-10119611
Step 1.3
Rewrite 9611 as 9611.
-10119611
Step 1.4
Simplify the numerator.
Tap for more steps...
Step 1.4.1
Rewrite 96 as 426.
Tap for more steps...
Step 1.4.1.1
Factor 16 out of 96.
-101116(6)11
Step 1.4.1.2
Rewrite 16 as 42.
-101142611
-101142611
Step 1.4.2
Pull terms out from under the radical.
-10114611
-10114611
Step 1.5
Multiply 4611 by 1111.
-1011(46111111)
Step 1.6
Combine and simplify the denominator.
Tap for more steps...
Step 1.6.1
Multiply 4611 by 1111.
-101146111111
Step 1.6.2
Raise 11 to the power of 1.
-1011461111111
Step 1.6.3
Raise 11 to the power of 1.
-10114611111111
Step 1.6.4
Use the power rule aman=am+n to combine exponents.
-10114611111+1
Step 1.6.5
Add 1 and 1.
-10114611112
Step 1.6.6
Rewrite 112 as 11.
Tap for more steps...
Step 1.6.6.1
Use nax=axn to rewrite 11 as 1112.
-10114611(1112)2
Step 1.6.6.2
Apply the power rule and multiply exponents, (am)n=amn.
-1011461111122
Step 1.6.6.3
Combine 12 and 2.
-101146111122
Step 1.6.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 1.6.6.4.1
Cancel the common factor.
-101146111122
Step 1.6.6.4.2
Rewrite the expression.
-10114611111
-10114611111
Step 1.6.6.5
Evaluate the exponent.
-1011461111
-1011461111
-1011461111
Step 1.7
Simplify the numerator.
Tap for more steps...
Step 1.7.1
Combine using the product rule for radicals.
-1011411611
Step 1.7.2
Multiply 11 by 6.
-101146611
-101146611
Step 1.8
Multiply -101146611.
Tap for more steps...
Step 1.8.1
Multiply 46611 by 1011.
-466101111
Step 1.8.2
Multiply 10 by 4.
-40661111
Step 1.8.3
Multiply 11 by 11.
-4066121
-4066121
-4066121
Step 2
The expression is constant, which means it can be rewritten with a factor of x0. The degree is the largest exponent on the variable.
0
 [x2  12  π  xdx ]