Enter a problem...
Finite Math Examples
2(-511)(√9611)
Step 1
Step 1.1
Multiply 2(-511).
Step 1.1.1
Multiply -1 by 2.
-2(511)√9611
Step 1.1.2
Combine -2 and 511.
-2⋅511√9611
Step 1.1.3
Multiply -2 by 5.
-1011√9611
-1011√9611
Step 1.2
Move the negative in front of the fraction.
-1011√9611
Step 1.3
Rewrite √9611 as √96√11.
-1011⋅√96√11
Step 1.4
Simplify the numerator.
Step 1.4.1
Rewrite 96 as 42⋅6.
Step 1.4.1.1
Factor 16 out of 96.
-1011⋅√16(6)√11
Step 1.4.1.2
Rewrite 16 as 42.
-1011⋅√42⋅6√11
-1011⋅√42⋅6√11
Step 1.4.2
Pull terms out from under the radical.
-1011⋅4√6√11
-1011⋅4√6√11
Step 1.5
Multiply 4√6√11 by √11√11.
-1011(4√6√11⋅√11√11)
Step 1.6
Combine and simplify the denominator.
Step 1.6.1
Multiply 4√6√11 by √11√11.
-1011⋅4√6√11√11√11
Step 1.6.2
Raise √11 to the power of 1.
-1011⋅4√6√11√111√11
Step 1.6.3
Raise √11 to the power of 1.
-1011⋅4√6√11√111√111
Step 1.6.4
Use the power rule aman=am+n to combine exponents.
-1011⋅4√6√11√111+1
Step 1.6.5
Add 1 and 1.
-1011⋅4√6√11√112
Step 1.6.6
Rewrite √112 as 11.
Step 1.6.6.1
Use n√ax=axn to rewrite √11 as 1112.
-1011⋅4√6√11(1112)2
Step 1.6.6.2
Apply the power rule and multiply exponents, (am)n=amn.
-1011⋅4√6√111112⋅2
Step 1.6.6.3
Combine 12 and 2.
-1011⋅4√6√111122
Step 1.6.6.4
Cancel the common factor of 2.
Step 1.6.6.4.1
Cancel the common factor.
-1011⋅4√6√111122
Step 1.6.6.4.2
Rewrite the expression.
-1011⋅4√6√11111
-1011⋅4√6√11111
Step 1.6.6.5
Evaluate the exponent.
-1011⋅4√6√1111
-1011⋅4√6√1111
-1011⋅4√6√1111
Step 1.7
Simplify the numerator.
Step 1.7.1
Combine using the product rule for radicals.
-1011⋅4√11⋅611
Step 1.7.2
Multiply 11 by 6.
-1011⋅4√6611
-1011⋅4√6611
Step 1.8
Multiply -1011⋅4√6611.
Step 1.8.1
Multiply 4√6611 by 1011.
-4√66⋅1011⋅11
Step 1.8.2
Multiply 10 by 4.
-40√6611⋅11
Step 1.8.3
Multiply 11 by 11.
-40√66121
-40√66121
-40√66121
Step 2
The expression is constant, which means it can be rewritten with a factor of x0. The degree is the largest exponent on the variable.
0