Enter a problem...
Finite Math Examples
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Step 3.1
Multiply the equation by .
Step 3.2
Simplify the left side.
Step 3.2.1
Apply the distributive property.
Step 3.3
Simplify the right side.
Step 3.3.1
Cancel the common factor of .
Step 3.3.1.1
Cancel the common factor.
Step 3.3.1.2
Rewrite the expression.
Step 3.4
Solve for .
Step 3.4.1
Rewrite the equation as .
Step 3.4.2
To remove the radical on the left side of the equation, square both sides of the equation.
Step 3.4.3
Simplify each side of the equation.
Step 3.4.3.1
Use to rewrite as .
Step 3.4.3.2
Simplify the left side.
Step 3.4.3.2.1
Simplify .
Step 3.4.3.2.1.1
Multiply the exponents in .
Step 3.4.3.2.1.1.1
Apply the power rule and multiply exponents, .
Step 3.4.3.2.1.1.2
Cancel the common factor of .
Step 3.4.3.2.1.1.2.1
Cancel the common factor.
Step 3.4.3.2.1.1.2.2
Rewrite the expression.
Step 3.4.3.2.1.2
Simplify.
Step 3.4.3.3
Simplify the right side.
Step 3.4.3.3.1
Simplify .
Step 3.4.3.3.1.1
Rewrite as .
Step 3.4.3.3.1.2
Expand using the FOIL Method.
Step 3.4.3.3.1.2.1
Apply the distributive property.
Step 3.4.3.3.1.2.2
Apply the distributive property.
Step 3.4.3.3.1.2.3
Apply the distributive property.
Step 3.4.3.3.1.3
Simplify and combine like terms.
Step 3.4.3.3.1.3.1
Simplify each term.
Step 3.4.3.3.1.3.1.1
Multiply by by adding the exponents.
Step 3.4.3.3.1.3.1.1.1
Move .
Step 3.4.3.3.1.3.1.1.2
Multiply by .
Step 3.4.3.3.1.3.1.2
Multiply by by adding the exponents.
Step 3.4.3.3.1.3.1.2.1
Move .
Step 3.4.3.3.1.3.1.2.2
Multiply by .
Step 3.4.3.3.1.3.1.3
Rewrite using the commutative property of multiplication.
Step 3.4.3.3.1.3.1.4
Multiply by by adding the exponents.
Step 3.4.3.3.1.3.1.4.1
Move .
Step 3.4.3.3.1.3.1.4.2
Multiply by .
Step 3.4.3.3.1.3.1.5
Multiply by by adding the exponents.
Step 3.4.3.3.1.3.1.5.1
Move .
Step 3.4.3.3.1.3.1.5.2
Multiply by .
Step 3.4.3.3.1.3.1.6
Rewrite using the commutative property of multiplication.
Step 3.4.3.3.1.3.1.7
Multiply by by adding the exponents.
Step 3.4.3.3.1.3.1.7.1
Move .
Step 3.4.3.3.1.3.1.7.2
Multiply by .
Step 3.4.3.3.1.3.1.8
Multiply by .
Step 3.4.3.3.1.3.2
Subtract from .
Step 3.4.3.3.1.3.2.1
Move .
Step 3.4.3.3.1.3.2.2
Subtract from .
Step 3.4.4
Solve for .
Step 3.4.4.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 3.4.4.2
Subtract from both sides of the equation.
Step 3.4.4.3
Subtract from both sides of the equation.
Step 3.4.4.4
Use the quadratic formula to find the solutions.
Step 3.4.4.5
Substitute the values , , and into the quadratic formula and solve for .
Step 3.4.4.6
Simplify the numerator.
Step 3.4.4.6.1
Apply the distributive property.
Step 3.4.4.6.2
Multiply by .
Step 3.4.4.6.3
Multiply by .
Step 3.4.4.6.4
Add parentheses.
Step 3.4.4.6.5
Let . Substitute for all occurrences of .
Step 3.4.4.6.5.1
Rewrite as .
Step 3.4.4.6.5.2
Expand using the FOIL Method.
Step 3.4.4.6.5.2.1
Apply the distributive property.
Step 3.4.4.6.5.2.2
Apply the distributive property.
Step 3.4.4.6.5.2.3
Apply the distributive property.
Step 3.4.4.6.5.3
Simplify and combine like terms.
Step 3.4.4.6.5.3.1
Simplify each term.
Step 3.4.4.6.5.3.1.1
Rewrite using the commutative property of multiplication.
Step 3.4.4.6.5.3.1.2
Multiply by by adding the exponents.
Step 3.4.4.6.5.3.1.2.1
Move .
Step 3.4.4.6.5.3.1.2.2
Use the power rule to combine exponents.
Step 3.4.4.6.5.3.1.2.3
Add and .
Step 3.4.4.6.5.3.1.3
Multiply by .
Step 3.4.4.6.5.3.1.4
Multiply by .
Step 3.4.4.6.5.3.1.5
Multiply by .
Step 3.4.4.6.5.3.1.6
Multiply by .
Step 3.4.4.6.5.3.2
Add and .
Step 3.4.4.6.6
Factor out of .
Step 3.4.4.6.6.1
Factor out of .
Step 3.4.4.6.6.2
Factor out of .
Step 3.4.4.6.6.3
Factor out of .
Step 3.4.4.6.6.4
Factor out of .
Step 3.4.4.6.6.5
Factor out of .
Step 3.4.4.6.6.6
Factor out of .
Step 3.4.4.6.6.7
Factor out of .
Step 3.4.4.6.7
Replace all occurrences of with .
Step 3.4.4.6.8
Simplify.
Step 3.4.4.6.8.1
Simplify each term.
Step 3.4.4.6.8.1.1
Apply the distributive property.
Step 3.4.4.6.8.1.2
Rewrite using the commutative property of multiplication.
Step 3.4.4.6.8.1.3
Move to the left of .
Step 3.4.4.6.8.1.4
Multiply by by adding the exponents.
Step 3.4.4.6.8.1.4.1
Move .
Step 3.4.4.6.8.1.4.2
Use the power rule to combine exponents.
Step 3.4.4.6.8.1.4.3
Add and .
Step 3.4.4.6.8.1.5
Apply the distributive property.
Step 3.4.4.6.8.1.6
Multiply by .
Step 3.4.4.6.8.1.7
Multiply by .
Step 3.4.4.6.8.2
Combine the opposite terms in .
Step 3.4.4.6.8.2.1
Subtract from .
Step 3.4.4.6.8.2.2
Add and .
Step 3.4.4.6.8.3
Add and .
Step 3.4.4.6.9
Rewrite as .
Step 3.4.4.6.9.1
Rewrite as .
Step 3.4.4.6.9.2
Rewrite as .
Step 3.4.4.6.10
Pull terms out from under the radical.
Step 3.4.4.6.11
One to any power is one.
Step 3.4.4.7
Simplify the expression to solve for the portion of the .
Step 3.4.4.7.1
Change the to .
Step 3.4.4.7.2
Cancel the common factor of and .
Step 3.4.4.7.2.1
Factor out of .
Step 3.4.4.7.2.2
Factor out of .
Step 3.4.4.7.2.3
Factor out of .
Step 3.4.4.7.2.4
Factor out of .
Step 3.4.4.7.2.5
Factor out of .
Step 3.4.4.7.2.6
Cancel the common factors.
Step 3.4.4.7.2.6.1
Factor out of .
Step 3.4.4.7.2.6.2
Cancel the common factor.
Step 3.4.4.7.2.6.3
Rewrite the expression.
Step 3.4.4.8
Simplify the expression to solve for the portion of the .
Step 3.4.4.8.1
Simplify the numerator.
Step 3.4.4.8.1.1
Apply the distributive property.
Step 3.4.4.8.1.2
Multiply by .
Step 3.4.4.8.1.3
Multiply by .
Step 3.4.4.8.1.4
Add parentheses.
Step 3.4.4.8.1.5
Let . Substitute for all occurrences of .
Step 3.4.4.8.1.5.1
Rewrite as .
Step 3.4.4.8.1.5.2
Expand using the FOIL Method.
Step 3.4.4.8.1.5.2.1
Apply the distributive property.
Step 3.4.4.8.1.5.2.2
Apply the distributive property.
Step 3.4.4.8.1.5.2.3
Apply the distributive property.
Step 3.4.4.8.1.5.3
Simplify and combine like terms.
Step 3.4.4.8.1.5.3.1
Simplify each term.
Step 3.4.4.8.1.5.3.1.1
Rewrite using the commutative property of multiplication.
Step 3.4.4.8.1.5.3.1.2
Multiply by by adding the exponents.
Step 3.4.4.8.1.5.3.1.2.1
Move .
Step 3.4.4.8.1.5.3.1.2.2
Use the power rule to combine exponents.
Step 3.4.4.8.1.5.3.1.2.3
Add and .
Step 3.4.4.8.1.5.3.1.3
Multiply by .
Step 3.4.4.8.1.5.3.1.4
Multiply by .
Step 3.4.4.8.1.5.3.1.5
Multiply by .
Step 3.4.4.8.1.5.3.1.6
Multiply by .
Step 3.4.4.8.1.5.3.2
Add and .
Step 3.4.4.8.1.6
Factor out of .
Step 3.4.4.8.1.6.1
Factor out of .
Step 3.4.4.8.1.6.2
Factor out of .
Step 3.4.4.8.1.6.3
Factor out of .
Step 3.4.4.8.1.6.4
Factor out of .
Step 3.4.4.8.1.6.5
Factor out of .
Step 3.4.4.8.1.6.6
Factor out of .
Step 3.4.4.8.1.6.7
Factor out of .
Step 3.4.4.8.1.7
Replace all occurrences of with .
Step 3.4.4.8.1.8
Simplify.
Step 3.4.4.8.1.8.1
Simplify each term.
Step 3.4.4.8.1.8.1.1
Apply the distributive property.
Step 3.4.4.8.1.8.1.2
Rewrite using the commutative property of multiplication.
Step 3.4.4.8.1.8.1.3
Move to the left of .
Step 3.4.4.8.1.8.1.4
Multiply by by adding the exponents.
Step 3.4.4.8.1.8.1.4.1
Move .
Step 3.4.4.8.1.8.1.4.2
Use the power rule to combine exponents.
Step 3.4.4.8.1.8.1.4.3
Add and .
Step 3.4.4.8.1.8.1.5
Apply the distributive property.
Step 3.4.4.8.1.8.1.6
Multiply by .
Step 3.4.4.8.1.8.1.7
Multiply by .
Step 3.4.4.8.1.8.2
Combine the opposite terms in .
Step 3.4.4.8.1.8.2.1
Subtract from .
Step 3.4.4.8.1.8.2.2
Add and .
Step 3.4.4.8.1.8.3
Add and .
Step 3.4.4.8.1.9
Rewrite as .
Step 3.4.4.8.1.9.1
Rewrite as .
Step 3.4.4.8.1.9.2
Rewrite as .
Step 3.4.4.8.1.10
Pull terms out from under the radical.
Step 3.4.4.8.1.11
One to any power is one.
Step 3.4.4.8.2
Change the to .
Step 3.4.4.8.3
Cancel the common factor of and .
Step 3.4.4.8.3.1
Factor out of .
Step 3.4.4.8.3.2
Factor out of .
Step 3.4.4.8.3.3
Factor out of .
Step 3.4.4.8.3.4
Factor out of .
Step 3.4.4.8.3.5
Factor out of .
Step 3.4.4.8.3.6
Cancel the common factors.
Step 3.4.4.8.3.6.1
Factor out of .
Step 3.4.4.8.3.6.2
Cancel the common factor.
Step 3.4.4.8.3.6.3
Rewrite the expression.
Step 3.4.4.9
The final answer is the combination of both solutions.
Step 4
Replace with to show the final answer.
Step 5
Step 5.1
The domain of the inverse is the range of the original function and vice versa. Find the domain and the range of and and compare them.
Step 5.2
Find the range of .
Step 5.2.1
The range is the set of all valid values. Use the graph to find the range.
Interval Notation:
Step 5.3
Find the domain of .
Step 5.3.1
Set the radicand in greater than or equal to to find where the expression is defined.
Step 5.3.2
Solve for .
Step 5.3.2.1
Subtract from both sides of the inequality.
Step 5.3.2.2
Divide each term in by and simplify.
Step 5.3.2.2.1
Divide each term in by .
Step 5.3.2.2.2
Simplify the left side.
Step 5.3.2.2.2.1
Cancel the common factor of .
Step 5.3.2.2.2.1.1
Cancel the common factor.
Step 5.3.2.2.2.1.2
Divide by .
Step 5.3.2.2.3
Simplify the right side.
Step 5.3.2.2.3.1
Move the negative in front of the fraction.
Step 5.3.2.3
Since the left side has an even power, it is always positive for all real numbers.
All real numbers
All real numbers
Step 5.3.3
Set the denominator in equal to to find where the expression is undefined.
Step 5.3.4
Solve for .
Step 5.3.4.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 5.3.4.2
Simplify .
Step 5.3.4.2.1
Rewrite as .
Step 5.3.4.2.2
Pull terms out from under the radical, assuming positive real numbers.
Step 5.3.4.2.3
Plus or minus is .
Step 5.3.5
The domain is all values of that make the expression defined.
Step 5.4
Since the domain of is not equal to the range of , then is not an inverse of .
There is no inverse
There is no inverse
Step 6