Enter a problem...
Finite Math Examples
,
Step 1
Consider the difference quotient formula.
Step 2
Step 2.1
Evaluate the function at .
Step 2.1.1
Replace the variable with in the expression.
Step 2.1.2
Simplify the result.
Step 2.1.2.1
Simplify the numerator.
Step 2.1.2.1.1
Rewrite as .
Step 2.1.2.1.2
Since both terms are perfect cubes, factor using the difference of cubes formula, where and .
Step 2.1.2.1.3
Simplify.
Step 2.1.2.1.3.1
Rewrite as .
Step 2.1.2.1.3.2
Expand using the FOIL Method.
Step 2.1.2.1.3.2.1
Apply the distributive property.
Step 2.1.2.1.3.2.2
Apply the distributive property.
Step 2.1.2.1.3.2.3
Apply the distributive property.
Step 2.1.2.1.3.3
Simplify and combine like terms.
Step 2.1.2.1.3.3.1
Simplify each term.
Step 2.1.2.1.3.3.1.1
Multiply by .
Step 2.1.2.1.3.3.1.2
Multiply by .
Step 2.1.2.1.3.3.2
Add and .
Step 2.1.2.1.3.3.2.1
Reorder and .
Step 2.1.2.1.3.3.2.2
Add and .
Step 2.1.2.1.3.4
Apply the distributive property.
Step 2.1.2.1.3.5
Move to the left of .
Step 2.1.2.1.3.6
Move to the left of .
Step 2.1.2.1.3.7
Multiply by .
Step 2.1.2.1.3.8
Raise to the power of .
Step 2.1.2.2
Simplify the denominator.
Step 2.1.2.2.1
Rewrite as .
Step 2.1.2.2.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2.1.2.3
Cancel the common factor of .
Step 2.1.2.3.1
Cancel the common factor.
Step 2.1.2.3.2
Rewrite the expression.
Step 2.1.2.4
The final answer is .
Step 2.2
Find the components of the definition.
Step 3
Plug in the components.
Step 4
Step 4.1
Simplify the numerator.
Step 4.1.1
To write as a fraction with a common denominator, multiply by .
Step 4.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.1.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 4.1.3.1
Multiply by .
Step 4.1.3.2
Multiply by .
Step 4.1.3.3
Reorder the factors of .
Step 4.1.4
Combine the numerators over the common denominator.
Step 4.1.5
Rewrite in a factored form.
Step 4.1.5.1
Expand by multiplying each term in the first expression by each term in the second expression.
Step 4.1.5.2
Simplify each term.
Step 4.1.5.2.1
Multiply by by adding the exponents.
Step 4.1.5.2.1.1
Multiply by .
Step 4.1.5.2.1.1.1
Raise to the power of .
Step 4.1.5.2.1.1.2
Use the power rule to combine exponents.
Step 4.1.5.2.1.2
Add and .
Step 4.1.5.2.2
Move to the left of .
Step 4.1.5.2.3
Multiply by by adding the exponents.
Step 4.1.5.2.3.1
Move .
Step 4.1.5.2.3.2
Multiply by .
Step 4.1.5.2.4
Multiply by .
Step 4.1.5.2.5
Move to the left of .
Step 4.1.5.2.6
Multiply by by adding the exponents.
Step 4.1.5.2.6.1
Move .
Step 4.1.5.2.6.2
Multiply by .
Step 4.1.5.2.7
Multiply by .
Step 4.1.5.2.8
Multiply by .
Step 4.1.5.2.9
Multiply by .
Step 4.1.5.3
Add and .
Step 4.1.5.4
Add and .
Step 4.1.5.5
Add and .
Step 4.1.5.6
Apply the distributive property.
Step 4.1.5.7
Simplify.
Step 4.1.5.7.1
Multiply by .
Step 4.1.5.7.2
Multiply by .
Step 4.1.5.8
Expand by multiplying each term in the first expression by each term in the second expression.
Step 4.1.5.9
Simplify each term.
Step 4.1.5.9.1
Multiply by by adding the exponents.
Step 4.1.5.9.1.1
Move .
Step 4.1.5.9.1.2
Multiply by .
Step 4.1.5.9.1.2.1
Raise to the power of .
Step 4.1.5.9.1.2.2
Use the power rule to combine exponents.
Step 4.1.5.9.1.3
Add and .
Step 4.1.5.9.2
Multiply by .
Step 4.1.5.9.3
Multiply by by adding the exponents.
Step 4.1.5.9.3.1
Move .
Step 4.1.5.9.3.2
Multiply by .
Step 4.1.5.9.4
Multiply by .
Step 4.1.5.9.5
Multiply by .
Step 4.1.5.10
Subtract from .
Step 4.1.5.11
Subtract from .
Step 4.1.5.12
Subtract from .
Step 4.1.5.13
Add and .
Step 4.1.5.14
Subtract from .
Step 4.1.5.15
Subtract from .
Step 4.1.5.15.1
Move .
Step 4.1.5.15.2
Subtract from .
Step 4.1.5.16
Add and .
Step 4.1.5.17
Subtract from .
Step 4.1.5.17.1
Move .
Step 4.1.5.17.2
Subtract from .
Step 4.1.5.18
Subtract from .
Step 4.1.5.19
Add and .
Step 4.1.5.20
Subtract from .
Step 4.1.5.21
Add and .
Step 4.1.5.22
Subtract from .
Step 4.1.5.23
Add and .
Step 4.1.5.24
Rewrite in a factored form.
Step 4.1.5.24.1
Factor out of .
Step 4.1.5.24.1.1
Factor out of .
Step 4.1.5.24.1.2
Factor out of .
Step 4.1.5.24.1.3
Factor out of .
Step 4.1.5.24.1.4
Factor out of .
Step 4.1.5.24.1.5
Factor out of .
Step 4.1.5.24.1.6
Factor out of .
Step 4.1.5.24.1.7
Factor out of .
Step 4.1.5.24.2
Multiply by .
Step 4.2
Multiply the numerator by the reciprocal of the denominator.
Step 4.3
Combine.
Step 4.4
Cancel the common factor of .
Step 4.4.1
Cancel the common factor.
Step 4.4.2
Rewrite the expression.
Step 4.5
Multiply by .
Step 5
Replace the variable with in the expression.
Step 6
Step 6.1
Factor out of .
Step 6.2
Factor out of .
Step 6.3
Factor out of .
Step 6.4
Factor out of .
Step 6.5
Factor out of .
Step 6.6
Factor out of .
Step 6.7
Factor out of .
Step 6.8
Cancel the common factors.
Step 6.8.1
Factor out of .
Step 6.8.2
Cancel the common factor.
Step 6.8.3
Rewrite the expression.
Step 7
Step 7.1
Multiply by .
Step 7.2
Add and .
Step 7.3
Add and .
Step 8
Step 8.1
Add and .
Step 8.2
Add and .
Step 9