Enter a problem...
Finite Math Examples
f(x)=x-9(x-7)(x+1)f(x)=x−9(x−7)(x+1)
Step 1
Write f(x)=x-9(x-7)(x+1) as an equation.
y=x-9(x-7)(x+1)
Step 2
Interchange the variables.
x=y-9(y-7)(y+1)
Step 3
Step 3.1
Rewrite the equation as y-9(y-7)(y+1)=x.
y-9(y-7)(y+1)=x
Step 3.2
Find the LCD of the terms in the equation.
Step 3.2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
(y-7)(y+1),1
Step 3.2.2
The LCM of one and any expression is the expression.
(y-7)(y+1)
(y-7)(y+1)
Step 3.3
Multiply each term in y-9(y-7)(y+1)=x by (y-7)(y+1) to eliminate the fractions.
Step 3.3.1
Multiply each term in y-9(y-7)(y+1)=x by (y-7)(y+1).
y-9(y-7)(y+1)((y-7)(y+1))=x((y-7)(y+1))
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Cancel the common factor of (y-7)(y+1).
Step 3.3.2.1.1
Cancel the common factor.
y-9(y-7)(y+1)((y-7)(y+1))=x((y-7)(y+1))
Step 3.3.2.1.2
Rewrite the expression.
y-9=x((y-7)(y+1))
y-9=x((y-7)(y+1))
y-9=x((y-7)(y+1))
Step 3.3.3
Simplify the right side.
Step 3.3.3.1
Expand (y-7)(y+1) using the FOIL Method.
Step 3.3.3.1.1
Apply the distributive property.
y-9=x(y(y+1)-7(y+1))
Step 3.3.3.1.2
Apply the distributive property.
y-9=x(y⋅y+y⋅1-7(y+1))
Step 3.3.3.1.3
Apply the distributive property.
y-9=x(y⋅y+y⋅1-7y-7⋅1)
y-9=x(y⋅y+y⋅1-7y-7⋅1)
Step 3.3.3.2
Simplify and combine like terms.
Step 3.3.3.2.1
Simplify each term.
Step 3.3.3.2.1.1
Multiply y by y.
y-9=x(y2+y⋅1-7y-7⋅1)
Step 3.3.3.2.1.2
Multiply y by 1.
y-9=x(y2+y-7y-7⋅1)
Step 3.3.3.2.1.3
Multiply -7 by 1.
y-9=x(y2+y-7y-7)
y-9=x(y2+y-7y-7)
Step 3.3.3.2.2
Subtract 7y from y.
y-9=x(y2-6y-7)
y-9=x(y2-6y-7)
Step 3.3.3.3
Apply the distributive property.
y-9=xy2+x(-6y)+x⋅-7
Step 3.3.3.4
Simplify.
Step 3.3.3.4.1
Rewrite using the commutative property of multiplication.
y-9=xy2-6xy+x⋅-7
Step 3.3.3.4.2
Move -7 to the left of x.
y-9=xy2-6xy-7⋅x
y-9=xy2-6xy-7x
y-9=xy2-6xy-7x
y-9=xy2-6xy-7x
Step 3.4
Solve the equation.
Step 3.4.1
Since y is on the right side of the equation, switch the sides so it is on the left side of the equation.
xy2-6xy-7x=y-9
Step 3.4.2
Subtract y from both sides of the equation.
xy2-6xy-7x-y=-9
Step 3.4.3
Add 9 to both sides of the equation.
xy2-6xy-7x-y+9=0
Step 3.4.4
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 3.4.5
Substitute the values a=x, b=-6x-1, and c=-7x+9 into the quadratic formula and solve for y.
-(-6x-1)±√(-6x-1)2-4⋅(x⋅(-7x+9))2x
Step 3.4.6
Simplify the numerator.
Step 3.4.6.1
Apply the distributive property.
y=-(-6x)+1±√(-6x-1)2-4⋅x⋅(-7x+9)2x
Step 3.4.6.2
Multiply -6 by -1.
y=6x+1±√(-6x-1)2-4⋅x⋅(-7x+9)2x
Step 3.4.6.3
Multiply -1 by -1.
y=6x+1±√(-6x-1)2-4⋅x⋅(-7x+9)2x
Step 3.4.6.4
Rewrite (-6x-1)2 as (-6x-1)(-6x-1).
y=6x+1±√(-6x-1)(-6x-1)-4⋅x⋅(-7x+9)2x
Step 3.4.6.5
Expand (-6x-1)(-6x-1) using the FOIL Method.
Step 3.4.6.5.1
Apply the distributive property.
y=6x+1±√-6x(-6x-1)-1(-6x-1)-4⋅x⋅(-7x+9)2x
Step 3.4.6.5.2
Apply the distributive property.
y=6x+1±√-6x(-6x)-6x⋅-1-1(-6x-1)-4⋅x⋅(-7x+9)2x
Step 3.4.6.5.3
Apply the distributive property.
y=6x+1±√-6x(-6x)-6x⋅-1-1(-6x)-1⋅-1-4⋅x⋅(-7x+9)2x
y=6x+1±√-6x(-6x)-6x⋅-1-1(-6x)-1⋅-1-4⋅x⋅(-7x+9)2x
Step 3.4.6.6
Simplify and combine like terms.
Step 3.4.6.6.1
Simplify each term.
Step 3.4.6.6.1.1
Rewrite using the commutative property of multiplication.
y=6x+1±√-6⋅(-6x⋅x)-6x⋅-1-1(-6x)-1⋅-1-4⋅x⋅(-7x+9)2x
Step 3.4.6.6.1.2
Multiply x by x by adding the exponents.
Step 3.4.6.6.1.2.1
Move x.
y=6x+1±√-6⋅(-6(x⋅x))-6x⋅-1-1(-6x)-1⋅-1-4⋅x⋅(-7x+9)2x
Step 3.4.6.6.1.2.2
Multiply x by x.
y=6x+1±√-6⋅(-6x2)-6x⋅-1-1(-6x)-1⋅-1-4⋅x⋅(-7x+9)2x
y=6x+1±√-6⋅(-6x2)-6x⋅-1-1(-6x)-1⋅-1-4⋅x⋅(-7x+9)2x
Step 3.4.6.6.1.3
Multiply -6 by -6.
y=6x+1±√36x2-6x⋅-1-1(-6x)-1⋅-1-4⋅x⋅(-7x+9)2x
Step 3.4.6.6.1.4
Multiply -1 by -6.
y=6x+1±√36x2+6x-1(-6x)-1⋅-1-4⋅x⋅(-7x+9)2x
Step 3.4.6.6.1.5
Multiply -6 by -1.
y=6x+1±√36x2+6x+6x-1⋅-1-4⋅x⋅(-7x+9)2x
Step 3.4.6.6.1.6
Multiply -1 by -1.
y=6x+1±√36x2+6x+6x+1-4⋅x⋅(-7x+9)2x
y=6x+1±√36x2+6x+6x+1-4⋅x⋅(-7x+9)2x
Step 3.4.6.6.2
Add 6x and 6x.
y=6x+1±√36x2+12x+1-4⋅x⋅(-7x+9)2x
y=6x+1±√36x2+12x+1-4⋅x⋅(-7x+9)2x
Step 3.4.6.7
Apply the distributive property.
y=6x+1±√36x2+12x+1-4x(-7x)-4x⋅92x
Step 3.4.6.8
Rewrite using the commutative property of multiplication.
y=6x+1±√36x2+12x+1-4⋅(-7x⋅x)-4x⋅92x
Step 3.4.6.9
Multiply 9 by -4.
y=6x+1±√36x2+12x+1-4⋅(-7x⋅x)-36x2x
Step 3.4.6.10
Simplify each term.
Step 3.4.6.10.1
Multiply x by x by adding the exponents.
Step 3.4.6.10.1.1
Move x.
y=6x+1±√36x2+12x+1-4⋅(-7(x⋅x))-36x2x
Step 3.4.6.10.1.2
Multiply x by x.
y=6x+1±√36x2+12x+1-4⋅(-7x2)-36x2x
y=6x+1±√36x2+12x+1-4⋅(-7x2)-36x2x
Step 3.4.6.10.2
Multiply -4 by -7.
y=6x+1±√36x2+12x+1+28x2-36x2x
y=6x+1±√36x2+12x+1+28x2-36x2x
Step 3.4.6.11
Add 36x2 and 28x2.
y=6x+1±√64x2+12x+1-36x2x
Step 3.4.6.12
Subtract 36x from 12x.
y=6x+1±√64x2-24x+12x
y=6x+1±√64x2-24x+12x
Step 3.4.7
Change the ± to +.
y=6x+1+√64x2-24x+12x
Step 3.4.8
Simplify the expression to solve for the - portion of the ±.
Step 3.4.8.1
Simplify the numerator.
Step 3.4.8.1.1
Apply the distributive property.
y=-(-6x)+1±√(-6x-1)2-4⋅x⋅(-7x+9)2x
Step 3.4.8.1.2
Multiply -6 by -1.
y=6x+1±√(-6x-1)2-4⋅x⋅(-7x+9)2x
Step 3.4.8.1.3
Multiply -1 by -1.
y=6x+1±√(-6x-1)2-4⋅x⋅(-7x+9)2x
Step 3.4.8.1.4
Rewrite (-6x-1)2 as (-6x-1)(-6x-1).
y=6x+1±√(-6x-1)(-6x-1)-4⋅x⋅(-7x+9)2x
Step 3.4.8.1.5
Expand (-6x-1)(-6x-1) using the FOIL Method.
Step 3.4.8.1.5.1
Apply the distributive property.
y=6x+1±√-6x(-6x-1)-1(-6x-1)-4⋅x⋅(-7x+9)2x
Step 3.4.8.1.5.2
Apply the distributive property.
y=6x+1±√-6x(-6x)-6x⋅-1-1(-6x-1)-4⋅x⋅(-7x+9)2x
Step 3.4.8.1.5.3
Apply the distributive property.
y=6x+1±√-6x(-6x)-6x⋅-1-1(-6x)-1⋅-1-4⋅x⋅(-7x+9)2x
y=6x+1±√-6x(-6x)-6x⋅-1-1(-6x)-1⋅-1-4⋅x⋅(-7x+9)2x
Step 3.4.8.1.6
Simplify and combine like terms.
Step 3.4.8.1.6.1
Simplify each term.
Step 3.4.8.1.6.1.1
Rewrite using the commutative property of multiplication.
y=6x+1±√-6⋅(-6x⋅x)-6x⋅-1-1(-6x)-1⋅-1-4⋅x⋅(-7x+9)2x
Step 3.4.8.1.6.1.2
Multiply x by x by adding the exponents.
Step 3.4.8.1.6.1.2.1
Move x.
y=6x+1±√-6⋅(-6(x⋅x))-6x⋅-1-1(-6x)-1⋅-1-4⋅x⋅(-7x+9)2x
Step 3.4.8.1.6.1.2.2
Multiply x by x.
y=6x+1±√-6⋅(-6x2)-6x⋅-1-1(-6x)-1⋅-1-4⋅x⋅(-7x+9)2x
y=6x+1±√-6⋅(-6x2)-6x⋅-1-1(-6x)-1⋅-1-4⋅x⋅(-7x+9)2x
Step 3.4.8.1.6.1.3
Multiply -6 by -6.
y=6x+1±√36x2-6x⋅-1-1(-6x)-1⋅-1-4⋅x⋅(-7x+9)2x
Step 3.4.8.1.6.1.4
Multiply -1 by -6.
y=6x+1±√36x2+6x-1(-6x)-1⋅-1-4⋅x⋅(-7x+9)2x
Step 3.4.8.1.6.1.5
Multiply -6 by -1.
y=6x+1±√36x2+6x+6x-1⋅-1-4⋅x⋅(-7x+9)2x
Step 3.4.8.1.6.1.6
Multiply -1 by -1.
y=6x+1±√36x2+6x+6x+1-4⋅x⋅(-7x+9)2x
y=6x+1±√36x2+6x+6x+1-4⋅x⋅(-7x+9)2x
Step 3.4.8.1.6.2
Add 6x and 6x.
y=6x+1±√36x2+12x+1-4⋅x⋅(-7x+9)2x
y=6x+1±√36x2+12x+1-4⋅x⋅(-7x+9)2x
Step 3.4.8.1.7
Apply the distributive property.
y=6x+1±√36x2+12x+1-4x(-7x)-4x⋅92x
Step 3.4.8.1.8
Rewrite using the commutative property of multiplication.
y=6x+1±√36x2+12x+1-4⋅(-7x⋅x)-4x⋅92x
Step 3.4.8.1.9
Multiply 9 by -4.
y=6x+1±√36x2+12x+1-4⋅(-7x⋅x)-36x2x
Step 3.4.8.1.10
Simplify each term.
Step 3.4.8.1.10.1
Multiply x by x by adding the exponents.
Step 3.4.8.1.10.1.1
Move x.
y=6x+1±√36x2+12x+1-4⋅(-7(x⋅x))-36x2x
Step 3.4.8.1.10.1.2
Multiply x by x.
y=6x+1±√36x2+12x+1-4⋅(-7x2)-36x2x
y=6x+1±√36x2+12x+1-4⋅(-7x2)-36x2x
Step 3.4.8.1.10.2
Multiply -4 by -7.
y=6x+1±√36x2+12x+1+28x2-36x2x
y=6x+1±√36x2+12x+1+28x2-36x2x
Step 3.4.8.1.11
Add 36x2 and 28x2.
y=6x+1±√64x2+12x+1-36x2x
Step 3.4.8.1.12
Subtract 36x from 12x.
y=6x+1±√64x2-24x+12x
y=6x+1±√64x2-24x+12x
Step 3.4.8.2
Change the ± to -.
y=6x+1-√64x2-24x+12x
y=6x+1-√64x2-24x+12x
Step 3.4.9
The final answer is the combination of both solutions.
y=6x+1+√64x2-24x+12x
y=6x+1-√64x2-24x+12x
y=6x+1+√64x2-24x+12x
y=6x+1-√64x2-24x+12x
y=6x+1+√64x2-24x+12x
y=6x+1-√64x2-24x+12x
Step 4
Replace y with f-1(x) to show the final answer.
f-1(x)=6x+1+√64x2-24x+12x,6x+1-√64x2-24x+12x
Step 5
Step 5.1
The domain of the inverse is the range of the original function and vice versa. Find the domain and the range of f(x)=x-9(x-7)(x+1) and f-1(x)=6x+1+√64x2-24x+12x,6x+1-√64x2-24x+12x and compare them.
Step 5.2
Find the range of f(x)=x-9(x-7)(x+1).
Step 5.2.1
The range is the set of all valid y values. Use the graph to find the range.
Interval Notation:
(-∞,3-√516]∪[3+√516,∞)
(-∞,3-√516]∪[3+√516,∞)
Step 5.3
Find the domain of 6x+1+√64x2-24x+12x.
Step 5.3.1
Set the radicand in √64x2-24x+1 greater than or equal to 0 to find where the expression is defined.
64x2-24x+1≥0
Step 5.3.2
Solve for x.
Step 5.3.2.1
Convert the inequality to an equation.
64x2-24x+1=0
Step 5.3.2.2
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 5.3.2.3
Substitute the values a=64, b=-24, and c=1 into the quadratic formula and solve for x.
24±√(-24)2-4⋅(64⋅1)2⋅64
Step 5.3.2.4
Simplify.
Step 5.3.2.4.1
Simplify the numerator.
Step 5.3.2.4.1.1
Raise -24 to the power of 2.
x=24±√576-4⋅64⋅12⋅64
Step 5.3.2.4.1.2
Multiply -4⋅64⋅1.
Step 5.3.2.4.1.2.1
Multiply -4 by 64.
x=24±√576-256⋅12⋅64
Step 5.3.2.4.1.2.2
Multiply -256 by 1.
x=24±√576-2562⋅64
x=24±√576-2562⋅64
Step 5.3.2.4.1.3
Subtract 256 from 576.
x=24±√3202⋅64
Step 5.3.2.4.1.4
Rewrite 320 as 82⋅5.
Step 5.3.2.4.1.4.1
Factor 64 out of 320.
x=24±√64(5)2⋅64
Step 5.3.2.4.1.4.2
Rewrite 64 as 82.
x=24±√82⋅52⋅64
x=24±√82⋅52⋅64
Step 5.3.2.4.1.5
Pull terms out from under the radical.
x=24±8√52⋅64
x=24±8√52⋅64
Step 5.3.2.4.2
Multiply 2 by 64.
x=24±8√5128
Step 5.3.2.4.3
Simplify 24±8√5128.
x=3±√516
x=3±√516
Step 5.3.2.5
Simplify the expression to solve for the + portion of the ±.
Step 5.3.2.5.1
Simplify the numerator.
Step 5.3.2.5.1.1
Raise -24 to the power of 2.
x=24±√576-4⋅64⋅12⋅64
Step 5.3.2.5.1.2
Multiply -4⋅64⋅1.
Step 5.3.2.5.1.2.1
Multiply -4 by 64.
x=24±√576-256⋅12⋅64
Step 5.3.2.5.1.2.2
Multiply -256 by 1.
x=24±√576-2562⋅64
x=24±√576-2562⋅64
Step 5.3.2.5.1.3
Subtract 256 from 576.
x=24±√3202⋅64
Step 5.3.2.5.1.4
Rewrite 320 as 82⋅5.
Step 5.3.2.5.1.4.1
Factor 64 out of 320.
x=24±√64(5)2⋅64
Step 5.3.2.5.1.4.2
Rewrite 64 as 82.
x=24±√82⋅52⋅64
x=24±√82⋅52⋅64
Step 5.3.2.5.1.5
Pull terms out from under the radical.
x=24±8√52⋅64
x=24±8√52⋅64
Step 5.3.2.5.2
Multiply 2 by 64.
x=24±8√5128
Step 5.3.2.5.3
Simplify 24±8√5128.
x=3±√516
Step 5.3.2.5.4
Change the ± to +.
x=3+√516
x=3+√516
Step 5.3.2.6
Simplify the expression to solve for the - portion of the ±.
Step 5.3.2.6.1
Simplify the numerator.
Step 5.3.2.6.1.1
Raise -24 to the power of 2.
x=24±√576-4⋅64⋅12⋅64
Step 5.3.2.6.1.2
Multiply -4⋅64⋅1.
Step 5.3.2.6.1.2.1
Multiply -4 by 64.
x=24±√576-256⋅12⋅64
Step 5.3.2.6.1.2.2
Multiply -256 by 1.
x=24±√576-2562⋅64
x=24±√576-2562⋅64
Step 5.3.2.6.1.3
Subtract 256 from 576.
x=24±√3202⋅64
Step 5.3.2.6.1.4
Rewrite 320 as 82⋅5.
Step 5.3.2.6.1.4.1
Factor 64 out of 320.
x=24±√64(5)2⋅64
Step 5.3.2.6.1.4.2
Rewrite 64 as 82.
x=24±√82⋅52⋅64
x=24±√82⋅52⋅64
Step 5.3.2.6.1.5
Pull terms out from under the radical.
x=24±8√52⋅64
x=24±8√52⋅64
Step 5.3.2.6.2
Multiply 2 by 64.
x=24±8√5128
Step 5.3.2.6.3
Simplify 24±8√5128.
x=3±√516
Step 5.3.2.6.4
Change the ± to -.
x=3-√516
x=3-√516
Step 5.3.2.7
Consolidate the solutions.
x=3+√516,3-√516
Step 5.3.2.8
Use each root to create test intervals.
x<3-√516
3-√516<x<3+√516
x>3+√516
Step 5.3.2.9
Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.
Step 5.3.2.9.1
Test a value on the interval x<3-√516 to see if it makes the inequality true.
Step 5.3.2.9.1.1
Choose a value on the interval x<3-√516 and see if this value makes the original inequality true.
x=0
Step 5.3.2.9.1.2
Replace x with 0 in the original inequality.
64(0)2-24⋅0+1≥0
Step 5.3.2.9.1.3
The left side 1 is greater than the right side 0, which means that the given statement is always true.
True
True
Step 5.3.2.9.2
Test a value on the interval 3-√516<x<3+√516 to see if it makes the inequality true.
Step 5.3.2.9.2.1
Choose a value on the interval 3-√516<x<3+√516 and see if this value makes the original inequality true.
x=0.19
Step 5.3.2.9.2.2
Replace x with 0.19 in the original inequality.
64(0.19)2-24⋅0.19+1≥0
Step 5.3.2.9.2.3
The left side -1.2496 is less than the right side 0, which means that the given statement is false.
False
False
Step 5.3.2.9.3
Test a value on the interval x>3+√516 to see if it makes the inequality true.
Step 5.3.2.9.3.1
Choose a value on the interval x>3+√516 and see if this value makes the original inequality true.
x=3
Step 5.3.2.9.3.2
Replace x with 3 in the original inequality.
64(3)2-24⋅3+1≥0
Step 5.3.2.9.3.3
The left side 505 is greater than the right side 0, which means that the given statement is always true.
True
True
Step 5.3.2.9.4
Compare the intervals to determine which ones satisfy the original inequality.
x<3-√516 True
3-√516<x<3+√516 False
x>3+√516 True
x<3-√516 True
3-√516<x<3+√516 False
x>3+√516 True
Step 5.3.2.10
The solution consists of all of the true intervals.
x≤3-√516 or x≥3+√516
x≤3-√516 or x≥3+√516
Step 5.3.3
Set the denominator in 6x+1+√64x2-24x+12x equal to 0 to find where the expression is undefined.
2x=0
Step 5.3.4
Divide each term in 2x=0 by 2 and simplify.
Step 5.3.4.1
Divide each term in 2x=0 by 2.
2x2=02
Step 5.3.4.2
Simplify the left side.
Step 5.3.4.2.1
Cancel the common factor of 2.
Step 5.3.4.2.1.1
Cancel the common factor.
2x2=02
Step 5.3.4.2.1.2
Divide x by 1.
x=02
x=02
x=02
Step 5.3.4.3
Simplify the right side.
Step 5.3.4.3.1
Divide 0 by 2.
x=0
x=0
x=0
Step 5.3.5
The domain is all values of x that make the expression defined.
(-∞,0)∪(0,3-√516]∪[3+√516,∞)
(-∞,0)∪(0,3-√516]∪[3+√516,∞)
Step 5.4
Since the domain of f-1(x)=6x+1+√64x2-24x+12x,6x+1-√64x2-24x+12x is not equal to the range of f(x)=x-9(x-7)(x+1), then f-1(x)=6x+1+√64x2-24x+12x,6x+1-√64x2-24x+12x is not an inverse of f(x)=x-9(x-7)(x+1).
There is no inverse
There is no inverse
Step 6