Finite Math Examples

Find the Inverse f(x)=(x-9)/((x-7)(x+1))
f(x)=x-9(x-7)(x+1)f(x)=x9(x7)(x+1)
Step 1
Write f(x)=x-9(x-7)(x+1) as an equation.
y=x-9(x-7)(x+1)
Step 2
Interchange the variables.
x=y-9(y-7)(y+1)
Step 3
Solve for y.
Tap for more steps...
Step 3.1
Rewrite the equation as y-9(y-7)(y+1)=x.
y-9(y-7)(y+1)=x
Step 3.2
Find the LCD of the terms in the equation.
Tap for more steps...
Step 3.2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
(y-7)(y+1),1
Step 3.2.2
The LCM of one and any expression is the expression.
(y-7)(y+1)
(y-7)(y+1)
Step 3.3
Multiply each term in y-9(y-7)(y+1)=x by (y-7)(y+1) to eliminate the fractions.
Tap for more steps...
Step 3.3.1
Multiply each term in y-9(y-7)(y+1)=x by (y-7)(y+1).
y-9(y-7)(y+1)((y-7)(y+1))=x((y-7)(y+1))
Step 3.3.2
Simplify the left side.
Tap for more steps...
Step 3.3.2.1
Cancel the common factor of (y-7)(y+1).
Tap for more steps...
Step 3.3.2.1.1
Cancel the common factor.
y-9(y-7)(y+1)((y-7)(y+1))=x((y-7)(y+1))
Step 3.3.2.1.2
Rewrite the expression.
y-9=x((y-7)(y+1))
y-9=x((y-7)(y+1))
y-9=x((y-7)(y+1))
Step 3.3.3
Simplify the right side.
Tap for more steps...
Step 3.3.3.1
Expand (y-7)(y+1) using the FOIL Method.
Tap for more steps...
Step 3.3.3.1.1
Apply the distributive property.
y-9=x(y(y+1)-7(y+1))
Step 3.3.3.1.2
Apply the distributive property.
y-9=x(yy+y1-7(y+1))
Step 3.3.3.1.3
Apply the distributive property.
y-9=x(yy+y1-7y-71)
y-9=x(yy+y1-7y-71)
Step 3.3.3.2
Simplify and combine like terms.
Tap for more steps...
Step 3.3.3.2.1
Simplify each term.
Tap for more steps...
Step 3.3.3.2.1.1
Multiply y by y.
y-9=x(y2+y1-7y-71)
Step 3.3.3.2.1.2
Multiply y by 1.
y-9=x(y2+y-7y-71)
Step 3.3.3.2.1.3
Multiply -7 by 1.
y-9=x(y2+y-7y-7)
y-9=x(y2+y-7y-7)
Step 3.3.3.2.2
Subtract 7y from y.
y-9=x(y2-6y-7)
y-9=x(y2-6y-7)
Step 3.3.3.3
Apply the distributive property.
y-9=xy2+x(-6y)+x-7
Step 3.3.3.4
Simplify.
Tap for more steps...
Step 3.3.3.4.1
Rewrite using the commutative property of multiplication.
y-9=xy2-6xy+x-7
Step 3.3.3.4.2
Move -7 to the left of x.
y-9=xy2-6xy-7x
y-9=xy2-6xy-7x
y-9=xy2-6xy-7x
y-9=xy2-6xy-7x
Step 3.4
Solve the equation.
Tap for more steps...
Step 3.4.1
Since y is on the right side of the equation, switch the sides so it is on the left side of the equation.
xy2-6xy-7x=y-9
Step 3.4.2
Subtract y from both sides of the equation.
xy2-6xy-7x-y=-9
Step 3.4.3
Add 9 to both sides of the equation.
xy2-6xy-7x-y+9=0
Step 3.4.4
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 3.4.5
Substitute the values a=x, b=-6x-1, and c=-7x+9 into the quadratic formula and solve for y.
-(-6x-1)±(-6x-1)2-4(x(-7x+9))2x
Step 3.4.6
Simplify the numerator.
Tap for more steps...
Step 3.4.6.1
Apply the distributive property.
y=-(-6x)+1±(-6x-1)2-4x(-7x+9)2x
Step 3.4.6.2
Multiply -6 by -1.
y=6x+1±(-6x-1)2-4x(-7x+9)2x
Step 3.4.6.3
Multiply -1 by -1.
y=6x+1±(-6x-1)2-4x(-7x+9)2x
Step 3.4.6.4
Rewrite (-6x-1)2 as (-6x-1)(-6x-1).
y=6x+1±(-6x-1)(-6x-1)-4x(-7x+9)2x
Step 3.4.6.5
Expand (-6x-1)(-6x-1) using the FOIL Method.
Tap for more steps...
Step 3.4.6.5.1
Apply the distributive property.
y=6x+1±-6x(-6x-1)-1(-6x-1)-4x(-7x+9)2x
Step 3.4.6.5.2
Apply the distributive property.
y=6x+1±-6x(-6x)-6x-1-1(-6x-1)-4x(-7x+9)2x
Step 3.4.6.5.3
Apply the distributive property.
y=6x+1±-6x(-6x)-6x-1-1(-6x)-1-1-4x(-7x+9)2x
y=6x+1±-6x(-6x)-6x-1-1(-6x)-1-1-4x(-7x+9)2x
Step 3.4.6.6
Simplify and combine like terms.
Tap for more steps...
Step 3.4.6.6.1
Simplify each term.
Tap for more steps...
Step 3.4.6.6.1.1
Rewrite using the commutative property of multiplication.
y=6x+1±-6(-6xx)-6x-1-1(-6x)-1-1-4x(-7x+9)2x
Step 3.4.6.6.1.2
Multiply x by x by adding the exponents.
Tap for more steps...
Step 3.4.6.6.1.2.1
Move x.
y=6x+1±-6(-6(xx))-6x-1-1(-6x)-1-1-4x(-7x+9)2x
Step 3.4.6.6.1.2.2
Multiply x by x.
y=6x+1±-6(-6x2)-6x-1-1(-6x)-1-1-4x(-7x+9)2x
y=6x+1±-6(-6x2)-6x-1-1(-6x)-1-1-4x(-7x+9)2x
Step 3.4.6.6.1.3
Multiply -6 by -6.
y=6x+1±36x2-6x-1-1(-6x)-1-1-4x(-7x+9)2x
Step 3.4.6.6.1.4
Multiply -1 by -6.
y=6x+1±36x2+6x-1(-6x)-1-1-4x(-7x+9)2x
Step 3.4.6.6.1.5
Multiply -6 by -1.
y=6x+1±36x2+6x+6x-1-1-4x(-7x+9)2x
Step 3.4.6.6.1.6
Multiply -1 by -1.
y=6x+1±36x2+6x+6x+1-4x(-7x+9)2x
y=6x+1±36x2+6x+6x+1-4x(-7x+9)2x
Step 3.4.6.6.2
Add 6x and 6x.
y=6x+1±36x2+12x+1-4x(-7x+9)2x
y=6x+1±36x2+12x+1-4x(-7x+9)2x
Step 3.4.6.7
Apply the distributive property.
y=6x+1±36x2+12x+1-4x(-7x)-4x92x
Step 3.4.6.8
Rewrite using the commutative property of multiplication.
y=6x+1±36x2+12x+1-4(-7xx)-4x92x
Step 3.4.6.9
Multiply 9 by -4.
y=6x+1±36x2+12x+1-4(-7xx)-36x2x
Step 3.4.6.10
Simplify each term.
Tap for more steps...
Step 3.4.6.10.1
Multiply x by x by adding the exponents.
Tap for more steps...
Step 3.4.6.10.1.1
Move x.
y=6x+1±36x2+12x+1-4(-7(xx))-36x2x
Step 3.4.6.10.1.2
Multiply x by x.
y=6x+1±36x2+12x+1-4(-7x2)-36x2x
y=6x+1±36x2+12x+1-4(-7x2)-36x2x
Step 3.4.6.10.2
Multiply -4 by -7.
y=6x+1±36x2+12x+1+28x2-36x2x
y=6x+1±36x2+12x+1+28x2-36x2x
Step 3.4.6.11
Add 36x2 and 28x2.
y=6x+1±64x2+12x+1-36x2x
Step 3.4.6.12
Subtract 36x from 12x.
y=6x+1±64x2-24x+12x
y=6x+1±64x2-24x+12x
Step 3.4.7
Change the ± to +.
y=6x+1+64x2-24x+12x
Step 3.4.8
Simplify the expression to solve for the - portion of the ±.
Tap for more steps...
Step 3.4.8.1
Simplify the numerator.
Tap for more steps...
Step 3.4.8.1.1
Apply the distributive property.
y=-(-6x)+1±(-6x-1)2-4x(-7x+9)2x
Step 3.4.8.1.2
Multiply -6 by -1.
y=6x+1±(-6x-1)2-4x(-7x+9)2x
Step 3.4.8.1.3
Multiply -1 by -1.
y=6x+1±(-6x-1)2-4x(-7x+9)2x
Step 3.4.8.1.4
Rewrite (-6x-1)2 as (-6x-1)(-6x-1).
y=6x+1±(-6x-1)(-6x-1)-4x(-7x+9)2x
Step 3.4.8.1.5
Expand (-6x-1)(-6x-1) using the FOIL Method.
Tap for more steps...
Step 3.4.8.1.5.1
Apply the distributive property.
y=6x+1±-6x(-6x-1)-1(-6x-1)-4x(-7x+9)2x
Step 3.4.8.1.5.2
Apply the distributive property.
y=6x+1±-6x(-6x)-6x-1-1(-6x-1)-4x(-7x+9)2x
Step 3.4.8.1.5.3
Apply the distributive property.
y=6x+1±-6x(-6x)-6x-1-1(-6x)-1-1-4x(-7x+9)2x
y=6x+1±-6x(-6x)-6x-1-1(-6x)-1-1-4x(-7x+9)2x
Step 3.4.8.1.6
Simplify and combine like terms.
Tap for more steps...
Step 3.4.8.1.6.1
Simplify each term.
Tap for more steps...
Step 3.4.8.1.6.1.1
Rewrite using the commutative property of multiplication.
y=6x+1±-6(-6xx)-6x-1-1(-6x)-1-1-4x(-7x+9)2x
Step 3.4.8.1.6.1.2
Multiply x by x by adding the exponents.
Tap for more steps...
Step 3.4.8.1.6.1.2.1
Move x.
y=6x+1±-6(-6(xx))-6x-1-1(-6x)-1-1-4x(-7x+9)2x
Step 3.4.8.1.6.1.2.2
Multiply x by x.
y=6x+1±-6(-6x2)-6x-1-1(-6x)-1-1-4x(-7x+9)2x
y=6x+1±-6(-6x2)-6x-1-1(-6x)-1-1-4x(-7x+9)2x
Step 3.4.8.1.6.1.3
Multiply -6 by -6.
y=6x+1±36x2-6x-1-1(-6x)-1-1-4x(-7x+9)2x
Step 3.4.8.1.6.1.4
Multiply -1 by -6.
y=6x+1±36x2+6x-1(-6x)-1-1-4x(-7x+9)2x
Step 3.4.8.1.6.1.5
Multiply -6 by -1.
y=6x+1±36x2+6x+6x-1-1-4x(-7x+9)2x
Step 3.4.8.1.6.1.6
Multiply -1 by -1.
y=6x+1±36x2+6x+6x+1-4x(-7x+9)2x
y=6x+1±36x2+6x+6x+1-4x(-7x+9)2x
Step 3.4.8.1.6.2
Add 6x and 6x.
y=6x+1±36x2+12x+1-4x(-7x+9)2x
y=6x+1±36x2+12x+1-4x(-7x+9)2x
Step 3.4.8.1.7
Apply the distributive property.
y=6x+1±36x2+12x+1-4x(-7x)-4x92x
Step 3.4.8.1.8
Rewrite using the commutative property of multiplication.
y=6x+1±36x2+12x+1-4(-7xx)-4x92x
Step 3.4.8.1.9
Multiply 9 by -4.
y=6x+1±36x2+12x+1-4(-7xx)-36x2x
Step 3.4.8.1.10
Simplify each term.
Tap for more steps...
Step 3.4.8.1.10.1
Multiply x by x by adding the exponents.
Tap for more steps...
Step 3.4.8.1.10.1.1
Move x.
y=6x+1±36x2+12x+1-4(-7(xx))-36x2x
Step 3.4.8.1.10.1.2
Multiply x by x.
y=6x+1±36x2+12x+1-4(-7x2)-36x2x
y=6x+1±36x2+12x+1-4(-7x2)-36x2x
Step 3.4.8.1.10.2
Multiply -4 by -7.
y=6x+1±36x2+12x+1+28x2-36x2x
y=6x+1±36x2+12x+1+28x2-36x2x
Step 3.4.8.1.11
Add 36x2 and 28x2.
y=6x+1±64x2+12x+1-36x2x
Step 3.4.8.1.12
Subtract 36x from 12x.
y=6x+1±64x2-24x+12x
y=6x+1±64x2-24x+12x
Step 3.4.8.2
Change the ± to -.
y=6x+1-64x2-24x+12x
y=6x+1-64x2-24x+12x
Step 3.4.9
The final answer is the combination of both solutions.
y=6x+1+64x2-24x+12x
y=6x+1-64x2-24x+12x
y=6x+1+64x2-24x+12x
y=6x+1-64x2-24x+12x
y=6x+1+64x2-24x+12x
y=6x+1-64x2-24x+12x
Step 4
Replace y with f-1(x) to show the final answer.
f-1(x)=6x+1+64x2-24x+12x,6x+1-64x2-24x+12x
Step 5
Verify if f-1(x)=6x+1+64x2-24x+12x,6x+1-64x2-24x+12x is the inverse of f(x)=x-9(x-7)(x+1).
Tap for more steps...
Step 5.1
The domain of the inverse is the range of the original function and vice versa. Find the domain and the range of f(x)=x-9(x-7)(x+1) and f-1(x)=6x+1+64x2-24x+12x,6x+1-64x2-24x+12x and compare them.
Step 5.2
Find the range of f(x)=x-9(x-7)(x+1).
Tap for more steps...
Step 5.2.1
The range is the set of all valid y values. Use the graph to find the range.
Interval Notation:
(-,3-516][3+516,)
(-,3-516][3+516,)
Step 5.3
Find the domain of 6x+1+64x2-24x+12x.
Tap for more steps...
Step 5.3.1
Set the radicand in 64x2-24x+1 greater than or equal to 0 to find where the expression is defined.
64x2-24x+10
Step 5.3.2
Solve for x.
Tap for more steps...
Step 5.3.2.1
Convert the inequality to an equation.
64x2-24x+1=0
Step 5.3.2.2
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 5.3.2.3
Substitute the values a=64, b=-24, and c=1 into the quadratic formula and solve for x.
24±(-24)2-4(641)264
Step 5.3.2.4
Simplify.
Tap for more steps...
Step 5.3.2.4.1
Simplify the numerator.
Tap for more steps...
Step 5.3.2.4.1.1
Raise -24 to the power of 2.
x=24±576-4641264
Step 5.3.2.4.1.2
Multiply -4641.
Tap for more steps...
Step 5.3.2.4.1.2.1
Multiply -4 by 64.
x=24±576-2561264
Step 5.3.2.4.1.2.2
Multiply -256 by 1.
x=24±576-256264
x=24±576-256264
Step 5.3.2.4.1.3
Subtract 256 from 576.
x=24±320264
Step 5.3.2.4.1.4
Rewrite 320 as 825.
Tap for more steps...
Step 5.3.2.4.1.4.1
Factor 64 out of 320.
x=24±64(5)264
Step 5.3.2.4.1.4.2
Rewrite 64 as 82.
x=24±825264
x=24±825264
Step 5.3.2.4.1.5
Pull terms out from under the radical.
x=24±85264
x=24±85264
Step 5.3.2.4.2
Multiply 2 by 64.
x=24±85128
Step 5.3.2.4.3
Simplify 24±85128.
x=3±516
x=3±516
Step 5.3.2.5
Simplify the expression to solve for the + portion of the ±.
Tap for more steps...
Step 5.3.2.5.1
Simplify the numerator.
Tap for more steps...
Step 5.3.2.5.1.1
Raise -24 to the power of 2.
x=24±576-4641264
Step 5.3.2.5.1.2
Multiply -4641.
Tap for more steps...
Step 5.3.2.5.1.2.1
Multiply -4 by 64.
x=24±576-2561264
Step 5.3.2.5.1.2.2
Multiply -256 by 1.
x=24±576-256264
x=24±576-256264
Step 5.3.2.5.1.3
Subtract 256 from 576.
x=24±320264
Step 5.3.2.5.1.4
Rewrite 320 as 825.
Tap for more steps...
Step 5.3.2.5.1.4.1
Factor 64 out of 320.
x=24±64(5)264
Step 5.3.2.5.1.4.2
Rewrite 64 as 82.
x=24±825264
x=24±825264
Step 5.3.2.5.1.5
Pull terms out from under the radical.
x=24±85264
x=24±85264
Step 5.3.2.5.2
Multiply 2 by 64.
x=24±85128
Step 5.3.2.5.3
Simplify 24±85128.
x=3±516
Step 5.3.2.5.4
Change the ± to +.
x=3+516
x=3+516
Step 5.3.2.6
Simplify the expression to solve for the - portion of the ±.
Tap for more steps...
Step 5.3.2.6.1
Simplify the numerator.
Tap for more steps...
Step 5.3.2.6.1.1
Raise -24 to the power of 2.
x=24±576-4641264
Step 5.3.2.6.1.2
Multiply -4641.
Tap for more steps...
Step 5.3.2.6.1.2.1
Multiply -4 by 64.
x=24±576-2561264
Step 5.3.2.6.1.2.2
Multiply -256 by 1.
x=24±576-256264
x=24±576-256264
Step 5.3.2.6.1.3
Subtract 256 from 576.
x=24±320264
Step 5.3.2.6.1.4
Rewrite 320 as 825.
Tap for more steps...
Step 5.3.2.6.1.4.1
Factor 64 out of 320.
x=24±64(5)264
Step 5.3.2.6.1.4.2
Rewrite 64 as 82.
x=24±825264
x=24±825264
Step 5.3.2.6.1.5
Pull terms out from under the radical.
x=24±85264
x=24±85264
Step 5.3.2.6.2
Multiply 2 by 64.
x=24±85128
Step 5.3.2.6.3
Simplify 24±85128.
x=3±516
Step 5.3.2.6.4
Change the ± to -.
x=3-516
x=3-516
Step 5.3.2.7
Consolidate the solutions.
x=3+516,3-516
Step 5.3.2.8
Use each root to create test intervals.
x<3-516
3-516<x<3+516
x>3+516
Step 5.3.2.9
Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.
Tap for more steps...
Step 5.3.2.9.1
Test a value on the interval x<3-516 to see if it makes the inequality true.
Tap for more steps...
Step 5.3.2.9.1.1
Choose a value on the interval x<3-516 and see if this value makes the original inequality true.
x=0
Step 5.3.2.9.1.2
Replace x with 0 in the original inequality.
64(0)2-240+10
Step 5.3.2.9.1.3
The left side 1 is greater than the right side 0, which means that the given statement is always true.
True
True
Step 5.3.2.9.2
Test a value on the interval 3-516<x<3+516 to see if it makes the inequality true.
Tap for more steps...
Step 5.3.2.9.2.1
Choose a value on the interval 3-516<x<3+516 and see if this value makes the original inequality true.
x=0.19
Step 5.3.2.9.2.2
Replace x with 0.19 in the original inequality.
64(0.19)2-240.19+10
Step 5.3.2.9.2.3
The left side -1.2496 is less than the right side 0, which means that the given statement is false.
False
False
Step 5.3.2.9.3
Test a value on the interval x>3+516 to see if it makes the inequality true.
Tap for more steps...
Step 5.3.2.9.3.1
Choose a value on the interval x>3+516 and see if this value makes the original inequality true.
x=3
Step 5.3.2.9.3.2
Replace x with 3 in the original inequality.
64(3)2-243+10
Step 5.3.2.9.3.3
The left side 505 is greater than the right side 0, which means that the given statement is always true.
True
True
Step 5.3.2.9.4
Compare the intervals to determine which ones satisfy the original inequality.
x<3-516 True
3-516<x<3+516 False
x>3+516 True
x<3-516 True
3-516<x<3+516 False
x>3+516 True
Step 5.3.2.10
The solution consists of all of the true intervals.
x3-516 or x3+516
x3-516 or x3+516
Step 5.3.3
Set the denominator in 6x+1+64x2-24x+12x equal to 0 to find where the expression is undefined.
2x=0
Step 5.3.4
Divide each term in 2x=0 by 2 and simplify.
Tap for more steps...
Step 5.3.4.1
Divide each term in 2x=0 by 2.
2x2=02
Step 5.3.4.2
Simplify the left side.
Tap for more steps...
Step 5.3.4.2.1
Cancel the common factor of 2.
Tap for more steps...
Step 5.3.4.2.1.1
Cancel the common factor.
2x2=02
Step 5.3.4.2.1.2
Divide x by 1.
x=02
x=02
x=02
Step 5.3.4.3
Simplify the right side.
Tap for more steps...
Step 5.3.4.3.1
Divide 0 by 2.
x=0
x=0
x=0
Step 5.3.5
The domain is all values of x that make the expression defined.
(-,0)(0,3-516][3+516,)
(-,0)(0,3-516][3+516,)
Step 5.4
Since the domain of f-1(x)=6x+1+64x2-24x+12x,6x+1-64x2-24x+12x is not equal to the range of f(x)=x-9(x-7)(x+1), then f-1(x)=6x+1+64x2-24x+12x,6x+1-64x2-24x+12x is not an inverse of f(x)=x-9(x-7)(x+1).
There is no inverse
There is no inverse
Step 6
 [x2  12  π  xdx ]