Enter a problem...
Finite Math Examples
f(x)=sin(√ex+1)f(x)=sin(√ex+1)
Step 1
Write f(x)=sin(√ex+1)f(x)=sin(√ex+1) as an equation.
y=sin(√ex+1)y=sin(√ex+1)
Step 2
Interchange the variables.
x=sin(√ey+1)x=sin(√ey+1)
Step 3
Step 3.1
Rewrite the equation as sin(√ey+1)=xsin(√ey+1)=x.
sin(√ey+1)=xsin(√ey+1)=x
Step 3.2
Substitute uu for √ey+1√ey+1.
sin(u)=xsin(u)=x
Step 3.3
Take the inverse sine of both sides of the equation to extract uu from inside the sine.
u=arcsin(x)u=arcsin(x)
Step 3.4
Substitute √ey+1√ey+1 for uu and solve √ey+1=arcsin(x)√ey+1=arcsin(x)
Step 3.4.1
To remove the radical on the left side of the equation, square both sides of the equation.
√ey+12=arcsin(x)2√ey+12=arcsin(x)2
Step 3.4.2
Simplify each side of the equation.
Step 3.4.2.1
Use n√ax=axnn√ax=axn to rewrite √ey+1√ey+1 as (ey+1)12(ey+1)12.
((ey+1)12)2=arcsin(x)2((ey+1)12)2=arcsin(x)2
Step 3.4.2.2
Simplify the left side.
Step 3.4.2.2.1
Simplify ((ey+1)12)2((ey+1)12)2.
Step 3.4.2.2.1.1
Multiply the exponents in ((ey+1)12)2((ey+1)12)2.
Step 3.4.2.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
(ey+1)12⋅2=arcsin(x)2(ey+1)12⋅2=arcsin(x)2
Step 3.4.2.2.1.1.2
Cancel the common factor of 22.
Step 3.4.2.2.1.1.2.1
Cancel the common factor.
(ey+1)12⋅2=arcsin(x)2
Step 3.4.2.2.1.1.2.2
Rewrite the expression.
(ey+1)1=arcsin(x)2
(ey+1)1=arcsin(x)2
(ey+1)1=arcsin(x)2
Step 3.4.2.2.1.2
Simplify.
ey+1=arcsin(x)2
ey+1=arcsin(x)2
ey+1=arcsin(x)2
ey+1=arcsin(x)2
Step 3.4.3
Solve for y.
Step 3.4.3.1
Subtract 1 from both sides of the equation.
ey=arcsin(x)2-1
Step 3.4.3.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(ey)=ln(arcsin(x)2-1)
Step 3.4.3.3
Expand the left side.
Step 3.4.3.3.1
Expand ln(ey) by moving y outside the logarithm.
yln(e)=ln(arcsin(x)2-1)
Step 3.4.3.3.2
The natural logarithm of e is 1.
y⋅1=ln(arcsin(x)2-1)
Step 3.4.3.3.3
Multiply y by 1.
y=ln(arcsin(x)2-1)
y=ln(arcsin(x)2-1)
y=ln(arcsin(x)2-1)
y=ln(arcsin(x)2-1)
y=ln(arcsin(x)2-1)
Step 4
Replace y with f-1(x) to show the final answer.
f-1(x)=ln(arcsin(x)2-1)
Step 5
Step 5.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 5.2
Evaluate f-1(f(x)).
Step 5.2.1
Set up the composite result function.
f-1(f(x))
Step 5.2.2
Evaluate f-1(sin(√ex+1)) by substituting in the value of f into f-1.
f-1(sin(√ex+1))=ln(arcsin(sin(√ex+1))2-1)
f-1(sin(√ex+1))=ln(arcsin(sin(√ex+1))2-1)
Step 5.3
Evaluate f(f-1(x)).
Step 5.3.1
Set up the composite result function.
f(f-1(x))
Step 5.3.2
Evaluate f(ln(arcsin(x)2-1)) by substituting in the value of f-1 into f.
f(ln(arcsin(x)2-1))=sin(√eln(arcsin(x)2-1)+1)
Step 5.3.3
Exponentiation and log are inverse functions.
f(ln(arcsin(x)2-1))=sin(√arcsin(x)2-1+1)
Step 5.3.4
Add -1 and 1.
f(ln(arcsin(x)2-1))=sin(√arcsin(x)2+0)
Step 5.3.5
Add arcsin(x)2 and 0.
f(ln(arcsin(x)2-1))=sin(√arcsin(x)2)
Step 5.3.6
Pull terms out from under the radical, assuming positive real numbers.
f(ln(arcsin(x)2-1))=sin(arcsin(x))
Step 5.3.7
The functions sine and arcsine are inverses.
f(ln(arcsin(x)2-1))=x
f(ln(arcsin(x)2-1))=x
Step 5.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=ln(arcsin(x)2-1) is the inverse of f(x)=sin(√ex+1).
f-1(x)=ln(arcsin(x)2-1)
f-1(x)=ln(arcsin(x)2-1)