Enter a problem...
Finite Math Examples
y=-18x2+xy=−18x2+x
Step 1
Combine x2x2 and 1818.
f(x)=-x28+xf(x)=−x28+x
Step 2
The maximum of a quadratic function occurs at x=-b2ax=−b2a. If aa is negative, the maximum value of the function is f(-b2a)f(−b2a).
fmaxfmaxx=ax2+bx+cx=ax2+bx+c occurs at x=-b2ax=−b2a
Step 3
Step 3.1
Substitute in the values of aa and bb.
x=-12(-0.125)x=−12(−0.125)
Step 3.2
Remove parentheses.
x=-12(-0.125)x=−12(−0.125)
Step 3.3
Simplify -12(-0.125)−12(−0.125).
Step 3.3.1
Multiply 22 by -0.125−0.125.
x=-1-0.25x=−1−0.25
Step 3.3.2
Divide 11 by -0.25−0.25.
x=--4x=−−4
Step 3.3.3
Multiply -1−1 by -4−4.
x=4x=4
x=4x=4
x=4x=4
Step 4
Step 4.1
Replace the variable xx with 44 in the expression.
f(4)=-(4)28+4f(4)=−(4)28+4
Step 4.2
Simplify the result.
Step 4.2.1
Remove parentheses.
f(4)=-(4)28+4f(4)=−(4)28+4
Step 4.2.2
Simplify each term.
Step 4.2.2.1
Raise 44 to the power of 22.
f(4)=-168+4f(4)=−168+4
Step 4.2.2.2
Divide 1616 by 88.
f(4)=-1⋅2+4f(4)=−1⋅2+4
Step 4.2.2.3
Multiply -1−1 by 22.
f(4)=-2+4f(4)=−2+4
f(4)=-2+4f(4)=−2+4
Step 4.2.3
Add -2−2 and 44.
f(4)=2f(4)=2
Step 4.2.4
The final answer is 22.
22
22
22
Step 5
Use the xx and yy values to find where the maximum occurs.
(4,2)(4,2)
Step 6