Enter a problem...
Finite Math Examples
Step 1
Apply the distributive property.
Step 2
Multiply by .
Step 3
The maximum of a quadratic function occurs at . If is negative, the maximum value of the function is .
occurs at
Step 4
Step 4.1
Substitute in the values of and .
Step 4.2
Remove parentheses.
Step 4.3
Simplify .
Step 4.3.1
Cancel the common factor of and .
Step 4.3.1.1
Factor out of .
Step 4.3.1.2
Cancel the common factors.
Step 4.3.1.2.1
Factor out of .
Step 4.3.1.2.2
Cancel the common factor.
Step 4.3.1.2.3
Rewrite the expression.
Step 4.3.2
Cancel the common factor of and .
Step 4.3.2.1
Factor out of .
Step 4.3.2.2
Cancel the common factors.
Step 4.3.2.2.1
Factor out of .
Step 4.3.2.2.2
Cancel the common factor.
Step 4.3.2.2.3
Rewrite the expression.
Step 4.3.3
Move the negative in front of the fraction.
Step 4.3.4
Multiply .
Step 4.3.4.1
Multiply by .
Step 4.3.4.2
Multiply by .
Step 5
Step 5.1
Replace the variable with in the expression.
Step 5.2
Simplify the result.
Step 5.2.1
Simplify each term.
Step 5.2.1.1
Apply the product rule to .
Step 5.2.1.2
Raise to the power of .
Step 5.2.1.3
Raise to the power of .
Step 5.2.1.4
Cancel the common factor of .
Step 5.2.1.4.1
Factor out of .
Step 5.2.1.4.2
Cancel the common factor.
Step 5.2.1.4.3
Rewrite the expression.
Step 5.2.1.5
Multiply by .
Step 5.2.1.6
Cancel the common factor of .
Step 5.2.1.6.1
Factor out of .
Step 5.2.1.6.2
Cancel the common factor.
Step 5.2.1.6.3
Rewrite the expression.
Step 5.2.1.7
Multiply by .
Step 5.2.2
Add and .
Step 5.2.3
The final answer is .
Step 6
Use the and values to find where the maximum occurs.
Step 7