Finite Math Examples

Expand Using Pascal's Triangle (1+2i)^3
(1+2i)3
Step 1
Pascal's Triangle can be displayed as such:
1
1-1
1-2-1
1-3-3-1
The triangle can be used to calculate the coefficients of the expansion of (a+b)n by taking the exponent n and adding 1. The coefficients will correspond with line n+1 of the triangle. For (1+2i)3, n=3 so the coefficients of the expansion will correspond with line 4.
Step 2
The expansion follows the rule (a+b)n=c0anb0+c1an-1b1+cn-1a1bn-1+cna0bn. The values of the coefficients, from the triangle, are 1-3-3-1.
1a3b0+3a2b+3ab2+1a0b3
Step 3
Substitute the actual values of a 1 and b 2i into the expression.
1(1)3(2i)0+3(1)2(2i)1+3(1)1(2i)2+1(1)0(2i)3
Step 4
Simplify the expression.
Tap for more steps...
Step 4.1
Simplify each term.
Tap for more steps...
Step 4.1.1
Multiply 1 by (1)3 by adding the exponents.
Tap for more steps...
Step 4.1.1.1
Multiply 1 by (1)3.
Tap for more steps...
Step 4.1.1.1.1
Raise 1 to the power of 1.
11(1)3(2i)0+3(1)2(2i)1+3(1)1(2i)2+1(1)0(2i)3
Step 4.1.1.1.2
Use the power rule aman=am+n to combine exponents.
11+3(2i)0+3(1)2(2i)1+3(1)1(2i)2+1(1)0(2i)3
11+3(2i)0+3(1)2(2i)1+3(1)1(2i)2+1(1)0(2i)3
Step 4.1.1.2
Add 1 and 3.
14(2i)0+3(1)2(2i)1+3(1)1(2i)2+1(1)0(2i)3
14(2i)0+3(1)2(2i)1+3(1)1(2i)2+1(1)0(2i)3
Step 4.1.2
Simplify 14(2i)0.
14+3(1)2(2i)1+3(1)1(2i)2+1(1)0(2i)3
Step 4.1.3
One to any power is one.
1+3(1)2(2i)1+3(1)1(2i)2+1(1)0(2i)3
Step 4.1.4
One to any power is one.
1+31(2i)1+3(1)1(2i)2+1(1)0(2i)3
Step 4.1.5
Multiply 3 by 1.
1+3(2i)1+3(1)1(2i)2+1(1)0(2i)3
Step 4.1.6
Simplify.
1+3(2i)+3(1)1(2i)2+1(1)0(2i)3
Step 4.1.7
Multiply 2 by 3.
1+6i+3(1)1(2i)2+1(1)0(2i)3
Step 4.1.8
Evaluate the exponent.
1+6i+31(2i)2+1(1)0(2i)3
Step 4.1.9
Multiply 3 by 1.
1+6i+3(2i)2+1(1)0(2i)3
Step 4.1.10
Apply the product rule to 2i.
1+6i+3(22i2)+1(1)0(2i)3
Step 4.1.11
Raise 2 to the power of 2.
1+6i+3(4i2)+1(1)0(2i)3
Step 4.1.12
Rewrite i2 as -1.
1+6i+3(4-1)+1(1)0(2i)3
Step 4.1.13
Multiply 3(4-1).
Tap for more steps...
Step 4.1.13.1
Multiply 4 by -1.
1+6i+3-4+1(1)0(2i)3
Step 4.1.13.2
Multiply 3 by -4.
1+6i-12+1(1)0(2i)3
1+6i-12+1(1)0(2i)3
Step 4.1.14
Multiply 1 by (1)0 by adding the exponents.
Tap for more steps...
Step 4.1.14.1
Multiply 1 by (1)0.
Tap for more steps...
Step 4.1.14.1.1
Raise 1 to the power of 1.
1+6i-12+11(1)0(2i)3
Step 4.1.14.1.2
Use the power rule aman=am+n to combine exponents.
1+6i-12+11+0(2i)3
1+6i-12+11+0(2i)3
Step 4.1.14.2
Add 1 and 0.
1+6i-12+11(2i)3
1+6i-12+11(2i)3
Step 4.1.15
Simplify 11(2i)3.
1+6i-12+(2i)3
Step 4.1.16
Apply the product rule to 2i.
1+6i-12+23i3
Step 4.1.17
Raise 2 to the power of 3.
1+6i-12+8i3
Step 4.1.18
Factor out i2.
1+6i-12+8(i2i)
Step 4.1.19
Rewrite i2 as -1.
1+6i-12+8(-1i)
Step 4.1.20
Rewrite -1i as -i.
1+6i-12+8(-i)
Step 4.1.21
Multiply -1 by 8.
1+6i-12-8i
1+6i-12-8i
Step 4.2
Simplify by adding terms.
Tap for more steps...
Step 4.2.1
Subtract 12 from 1.
-11+6i-8i
Step 4.2.2
Subtract 8i from 6i.
-11-2i
-11-2i
-11-2i
 [x2  12  π  xdx ]