Finite Math Examples

Solve by Substitution -2/3x+y/2=1/6 , x/6-y=5/6
,
Step 1
Solve for in .
Tap for more steps...
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Divide each term in by and simplify.
Tap for more steps...
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Tap for more steps...
Step 1.2.2.1
Dividing two negative values results in a positive value.
Step 1.2.2.2
Divide by .
Step 1.2.3
Simplify the right side.
Tap for more steps...
Step 1.2.3.1
Simplify each term.
Tap for more steps...
Step 1.2.3.1.1
Move the negative one from the denominator of .
Step 1.2.3.1.2
Rewrite as .
Step 1.2.3.1.3
Dividing two negative values results in a positive value.
Step 1.2.3.1.4
Divide by .
Step 2
Replace all occurrences of with in each equation.
Tap for more steps...
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Tap for more steps...
Step 2.2.1
Simplify .
Tap for more steps...
Step 2.2.1.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1.1
Move to the left of .
Step 2.2.1.1.2
Combine the numerators over the common denominator.
Step 2.2.1.1.3
Multiply the numerator by the reciprocal of the denominator.
Step 2.2.1.1.4
Multiply .
Tap for more steps...
Step 2.2.1.1.4.1
Multiply by .
Step 2.2.1.1.4.2
Multiply by .
Step 2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 2.2.1.3.1
Multiply by .
Step 2.2.1.3.2
Multiply by .
Step 2.2.1.4
Combine the numerators over the common denominator.
Step 2.2.1.5
Simplify the numerator.
Tap for more steps...
Step 2.2.1.5.1
Multiply by .
Step 2.2.1.5.2
Add and .
Step 2.2.1.6
Simplify with factoring out.
Tap for more steps...
Step 2.2.1.6.1
Factor out of .
Step 2.2.1.6.2
Rewrite as .
Step 2.2.1.6.3
Factor out of .
Step 2.2.1.6.4
Simplify the expression.
Tap for more steps...
Step 2.2.1.6.4.1
Rewrite as .
Step 2.2.1.6.4.2
Move the negative in front of the fraction.
Step 3
Solve for in .
Tap for more steps...
Step 3.1
Multiply both sides of the equation by .
Step 3.2
Simplify both sides of the equation.
Tap for more steps...
Step 3.2.1
Simplify the left side.
Tap for more steps...
Step 3.2.1.1
Simplify .
Tap for more steps...
Step 3.2.1.1.1
Cancel the common factor of .
Tap for more steps...
Step 3.2.1.1.1.1
Move the leading negative in into the numerator.
Step 3.2.1.1.1.2
Factor out of .
Step 3.2.1.1.1.3
Cancel the common factor.
Step 3.2.1.1.1.4
Rewrite the expression.
Step 3.2.1.1.2
Multiply.
Tap for more steps...
Step 3.2.1.1.2.1
Multiply by .
Step 3.2.1.1.2.2
Multiply by .
Step 3.2.2
Simplify the right side.
Tap for more steps...
Step 3.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.2.2.1.1
Factor out of .
Step 3.2.2.1.2
Cancel the common factor.
Step 3.2.2.1.3
Rewrite the expression.
Step 3.3
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 3.3.1
Subtract from both sides of the equation.
Step 3.3.2
Subtract from .
Step 3.4
Divide each term in by and simplify.
Tap for more steps...
Step 3.4.1
Divide each term in by .
Step 3.4.2
Simplify the left side.
Tap for more steps...
Step 3.4.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.4.2.1.1
Cancel the common factor.
Step 3.4.2.1.2
Divide by .
Step 3.4.3
Simplify the right side.
Tap for more steps...
Step 3.4.3.1
Divide by .
Step 4
Replace all occurrences of with in each equation.
Tap for more steps...
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Tap for more steps...
Step 4.2.1
Simplify .
Tap for more steps...
Step 4.2.1.1
Combine the numerators over the common denominator.
Step 4.2.1.2
Simplify the expression.
Tap for more steps...
Step 4.2.1.2.1
Subtract from .
Step 4.2.1.2.2
Divide by .
Step 5
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 6
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 7