Enter a problem...
Finite Math Examples
,
Step 1
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Divide each term in by and simplify.
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of .
Step 1.2.2.1.1
Cancel the common factor.
Step 1.2.2.1.2
Rewrite the expression.
Step 1.2.2.2
Cancel the common factor of .
Step 1.2.2.2.1
Cancel the common factor.
Step 1.2.2.2.2
Divide by .
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Simplify each term.
Step 1.2.3.1.1
Move the negative in front of the fraction.
Step 1.2.3.1.2
Cancel the common factor of and .
Step 1.2.3.1.2.1
Factor out of .
Step 1.2.3.1.2.2
Cancel the common factors.
Step 1.2.3.1.2.2.1
Factor out of .
Step 1.2.3.1.2.2.2
Cancel the common factor.
Step 1.2.3.1.2.2.3
Rewrite the expression.
Step 1.2.3.1.3
Dividing two negative values results in a positive value.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Rewrite as .
Step 2.2.1.1.2
Expand using the FOIL Method.
Step 2.2.1.1.2.1
Apply the distributive property.
Step 2.2.1.1.2.2
Apply the distributive property.
Step 2.2.1.1.2.3
Apply the distributive property.
Step 2.2.1.1.3
Simplify and combine like terms.
Step 2.2.1.1.3.1
Simplify each term.
Step 2.2.1.1.3.1.1
Multiply .
Step 2.2.1.1.3.1.1.1
Multiply by .
Step 2.2.1.1.3.1.1.2
Multiply by .
Step 2.2.1.1.3.1.1.3
Multiply by .
Step 2.2.1.1.3.1.1.4
Multiply by .
Step 2.2.1.1.3.1.1.5
Multiply by .
Step 2.2.1.1.3.1.1.6
Raise to the power of .
Step 2.2.1.1.3.1.1.7
Raise to the power of .
Step 2.2.1.1.3.1.1.8
Use the power rule to combine exponents.
Step 2.2.1.1.3.1.1.9
Add and .
Step 2.2.1.1.3.1.2
Cancel the common factor of .
Step 2.2.1.1.3.1.2.1
Move the leading negative in into the numerator.
Step 2.2.1.1.3.1.2.2
Factor out of .
Step 2.2.1.1.3.1.2.3
Cancel the common factor.
Step 2.2.1.1.3.1.2.4
Rewrite the expression.
Step 2.2.1.1.3.1.3
Multiply by .
Step 2.2.1.1.3.1.4
Multiply by .
Step 2.2.1.1.3.1.5
Move the negative in front of the fraction.
Step 2.2.1.1.3.1.6
Rewrite using the commutative property of multiplication.
Step 2.2.1.1.3.1.7
Cancel the common factor of .
Step 2.2.1.1.3.1.7.1
Move the leading negative in into the numerator.
Step 2.2.1.1.3.1.7.2
Factor out of .
Step 2.2.1.1.3.1.7.3
Factor out of .
Step 2.2.1.1.3.1.7.4
Cancel the common factor.
Step 2.2.1.1.3.1.7.5
Rewrite the expression.
Step 2.2.1.1.3.1.8
Multiply by .
Step 2.2.1.1.3.1.9
Multiply by .
Step 2.2.1.1.3.1.10
Multiply by .
Step 2.2.1.1.3.1.11
Move the negative in front of the fraction.
Step 2.2.1.1.3.1.12
Multiply .
Step 2.2.1.1.3.1.12.1
Multiply by .
Step 2.2.1.1.3.1.12.2
Raise to the power of .
Step 2.2.1.1.3.1.12.3
Raise to the power of .
Step 2.2.1.1.3.1.12.4
Use the power rule to combine exponents.
Step 2.2.1.1.3.1.12.5
Add and .
Step 2.2.1.1.3.1.12.6
Multiply by .
Step 2.2.1.1.3.2
Subtract from .
Step 2.2.1.1.4
Simplify each term.
Step 2.2.1.1.4.1
Cancel the common factor of .
Step 2.2.1.1.4.1.1
Factor out of .
Step 2.2.1.1.4.1.2
Factor out of .
Step 2.2.1.1.4.1.3
Cancel the common factor.
Step 2.2.1.1.4.1.4
Rewrite the expression.
Step 2.2.1.1.4.2
Rewrite as .
Step 2.2.1.1.5
Apply the distributive property.
Step 2.2.1.1.6
Simplify.
Step 2.2.1.1.6.1
Cancel the common factor of .
Step 2.2.1.1.6.1.1
Factor out of .
Step 2.2.1.1.6.1.2
Factor out of .
Step 2.2.1.1.6.1.3
Cancel the common factor.
Step 2.2.1.1.6.1.4
Rewrite the expression.
Step 2.2.1.1.6.2
Cancel the common factor of .
Step 2.2.1.1.6.2.1
Move the leading negative in into the numerator.
Step 2.2.1.1.6.2.2
Factor out of .
Step 2.2.1.1.6.2.3
Cancel the common factor.
Step 2.2.1.1.6.2.4
Rewrite the expression.
Step 2.2.1.1.6.3
Multiply by .
Step 2.2.1.1.6.4
Cancel the common factor of .
Step 2.2.1.1.6.4.1
Factor out of .
Step 2.2.1.1.6.4.2
Cancel the common factor.
Step 2.2.1.1.6.4.3
Rewrite the expression.
Step 2.2.1.1.7
Simplify each term.
Step 2.2.1.1.7.1
Rewrite as .
Step 2.2.1.1.7.2
Rewrite as .
Step 2.2.1.2
Combine the opposite terms in .
Step 2.2.1.2.1
Subtract from .
Step 2.2.1.2.2
Add and .
Step 3
Step 3.1
Move all terms not containing to the right side of the equation.
Step 3.1.1
Subtract from both sides of the equation.
Step 3.1.2
Subtract from .
Step 3.2
Find the LCD of the terms in the equation.
Step 3.2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 3.2.2
The LCM of one and any expression is the expression.
Step 3.3
Multiply each term in by to eliminate the fractions.
Step 3.3.1
Multiply each term in by .
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Cancel the common factor of .
Step 3.3.2.1.1
Move the leading negative in into the numerator.
Step 3.3.2.1.2
Cancel the common factor.
Step 3.3.2.1.3
Rewrite the expression.
Step 3.4
Solve the equation.
Step 3.4.1
Rewrite the equation as .
Step 3.4.2
Divide each term in by and simplify.
Step 3.4.2.1
Divide each term in by .
Step 3.4.2.2
Simplify the left side.
Step 3.4.2.2.1
Cancel the common factor of .
Step 3.4.2.2.1.1
Cancel the common factor.
Step 3.4.2.2.1.2
Divide by .
Step 3.4.2.3
Simplify the right side.
Step 3.4.2.3.1
Divide by .
Step 3.4.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.4.4
Simplify .
Step 3.4.4.1
Rewrite as .
Step 3.4.4.2
Pull terms out from under the radical, assuming positive real numbers.
Step 3.4.5
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.4.5.1
First, use the positive value of the to find the first solution.
Step 3.4.5.2
Next, use the negative value of the to find the second solution.
Step 3.4.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Cancel the common factor of and .
Step 4.2.1.1.1
Factor out of .
Step 4.2.1.1.2
Cancel the common factors.
Step 4.2.1.1.2.1
Factor out of .
Step 4.2.1.1.2.2
Cancel the common factor.
Step 4.2.1.1.2.3
Rewrite the expression.
Step 4.2.1.2
Combine the numerators over the common denominator.
Step 4.2.1.3
Simplify the expression.
Step 4.2.1.3.1
Add and .
Step 4.2.1.3.2
Divide by .
Step 5
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Simplify each term.
Step 5.2.1.1.1
Cancel the common factor of and .
Step 5.2.1.1.1.1
Factor out of .
Step 5.2.1.1.1.2
Cancel the common factors.
Step 5.2.1.1.1.2.1
Factor out of .
Step 5.2.1.1.1.2.2
Cancel the common factor.
Step 5.2.1.1.1.2.3
Rewrite the expression.
Step 5.2.1.1.2
Multiply by .
Step 5.2.1.1.3
Move the negative in front of the fraction.
Step 5.2.1.1.4
Multiply .
Step 5.2.1.1.4.1
Multiply by .
Step 5.2.1.1.4.2
Multiply by .
Step 5.2.1.1.5
Move the negative in front of the fraction.
Step 5.2.1.2
Combine fractions.
Step 5.2.1.2.1
Combine the numerators over the common denominator.
Step 5.2.1.2.2
Simplify the expression.
Step 5.2.1.2.2.1
Subtract from .
Step 5.2.1.2.2.2
Divide by .
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 7
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 8