Enter a problem...
Finite Math Examples
Step 1
Step 1.1
Subtract from both sides of the inequality.
Step 1.2
Simplify each term.
Step 1.2.1
Rewrite as .
Step 1.2.2
Expand using the FOIL Method.
Step 1.2.2.1
Apply the distributive property.
Step 1.2.2.2
Apply the distributive property.
Step 1.2.2.3
Apply the distributive property.
Step 1.2.3
Simplify and combine like terms.
Step 1.2.3.1
Simplify each term.
Step 1.2.3.1.1
Multiply by .
Step 1.2.3.1.2
Move to the left of .
Step 1.2.3.1.3
Multiply by .
Step 1.2.3.2
Add and .
Step 1.3
Subtract from .
Step 2
Step 2.1
Add to both sides of the inequality.
Step 2.2
Add and .
Step 3
Convert the inequality to an equation.
Step 4
Use the quadratic formula to find the solutions.
Step 5
Substitute the values , , and into the quadratic formula and solve for .
Step 6
Step 6.1
Simplify the numerator.
Step 6.1.1
Raise to the power of .
Step 6.1.2
Multiply .
Step 6.1.2.1
Multiply by .
Step 6.1.2.2
Multiply by .
Step 6.1.3
Subtract from .
Step 6.1.4
Rewrite as .
Step 6.1.4.1
Factor out of .
Step 6.1.4.2
Rewrite as .
Step 6.1.5
Pull terms out from under the radical.
Step 6.2
Multiply by .
Step 6.3
Simplify .
Step 7
Step 7.1
Simplify the numerator.
Step 7.1.1
Raise to the power of .
Step 7.1.2
Multiply .
Step 7.1.2.1
Multiply by .
Step 7.1.2.2
Multiply by .
Step 7.1.3
Subtract from .
Step 7.1.4
Rewrite as .
Step 7.1.4.1
Factor out of .
Step 7.1.4.2
Rewrite as .
Step 7.1.5
Pull terms out from under the radical.
Step 7.2
Multiply by .
Step 7.3
Simplify .
Step 7.4
Change the to .
Step 8
Step 8.1
Simplify the numerator.
Step 8.1.1
Raise to the power of .
Step 8.1.2
Multiply .
Step 8.1.2.1
Multiply by .
Step 8.1.2.2
Multiply by .
Step 8.1.3
Subtract from .
Step 8.1.4
Rewrite as .
Step 8.1.4.1
Factor out of .
Step 8.1.4.2
Rewrite as .
Step 8.1.5
Pull terms out from under the radical.
Step 8.2
Multiply by .
Step 8.3
Simplify .
Step 8.4
Change the to .
Step 9
Consolidate the solutions.
Step 10
Use each root to create test intervals.
Step 11
Step 11.1
Test a value on the interval to see if it makes the inequality true.
Step 11.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 11.1.2
Replace with in the original inequality.
Step 11.1.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 11.2
Test a value on the interval to see if it makes the inequality true.
Step 11.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 11.2.2
Replace with in the original inequality.
Step 11.2.3
The left side is not greater than the right side , which means that the given statement is false.
False
False
Step 11.3
Test a value on the interval to see if it makes the inequality true.
Step 11.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 11.3.2
Replace with in the original inequality.
Step 11.3.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 11.4
Compare the intervals to determine which ones satisfy the original inequality.
True
False
True
True
False
True
Step 12
The solution consists of all of the true intervals.
or
Step 13
Convert the inequality to interval notation.
Step 14