Enter a problem...
Finite Math Examples
(-6.8,7(-2.1-6.2))(−6.8,7(−2.1−6.2))
Step 1
To find an exponential function, f(x)=axf(x)=ax, containing the point, set f(x)f(x) in the function to the yy value 7(-2.1-6.2)7(−2.1−6.2) of the point, and set xx to the xx value -6.8−6.8 of the point.
7(-2.1-6.2)=a-6.87(−2.1−6.2)=a−6.8
Step 2
Step 2.1
Rewrite the equation as a-6.8=7(-2.1-6.2)a−6.8=7(−2.1−6.2).
a-6.8=7(-2.1-6.2)a−6.8=7(−2.1−6.2)
Step 2.2
Move the terms containing aa to the left side and simplify.
Step 2.2.1
Subtract 6.26.2 from -2.1−2.1.
a-6.8=7⋅-8.3a−6.8=7⋅−8.3
Step 2.2.2
Multiply 77 by -8.3−8.3.
a-6.8=-58.1a−6.8=−58.1
a-6.8=-58.1a−6.8=−58.1
Step 2.3
Convert the decimal exponent to a fractional exponent.
Step 2.3.1
Convert the decimal number to a fraction by placing the decimal number over a power of ten. Since there is 11 number to the right of the decimal point, place the decimal number over 101101 (10)(10). Next, add the whole number to the left of the decimal.
a-6810=-58.1a−6810=−58.1
Step 2.3.2
Reduce the fractional part of the mixed number.
a-645=-58.1a−645=−58.1
Step 2.3.3
Convert 645645 to an improper fraction.
Step 2.3.3.1
A mixed number is an addition of its whole and fractional parts.
a-(6+45)=-58.1a−(6+45)=−58.1
Step 2.3.3.2
Add 66 and 4545.
Step 2.3.3.2.1
To write 66 as a fraction with a common denominator, multiply by 5555.
a-(6⋅55+45)=-58.1a−(6⋅55+45)=−58.1
Step 2.3.3.2.2
Combine 66 and 5555.
a-(6⋅55+45)=-58.1a−(6⋅55+45)=−58.1
Step 2.3.3.2.3
Combine the numerators over the common denominator.
a-6⋅5+45=-58.1a−6⋅5+45=−58.1
Step 2.3.3.2.4
Simplify the numerator.
Step 2.3.3.2.4.1
Multiply 66 by 55.
a-30+45=-58.1a−30+45=−58.1
Step 2.3.3.2.4.2
Add 3030 and 44.
a-345=-58.1a−345=−58.1
a-345=-58.1a−345=−58.1
a-345=-58.1a−345=−58.1
a-345=-58.1a−345=−58.1
a-345=-58.1a−345=−58.1
Step 2.4
Raise each side of the equation to the power of 1-6.81−6.8 to eliminate the fractional exponent on the left side.
(a-345)1-6.8=(-58.1)1-6.8(a−345)1−6.8=(−58.1)1−6.8
Step 2.5
Simplify the exponent.
Step 2.5.1
Simplify the left side.
Step 2.5.1.1
Simplify (a-345)1-6.8(a−345)1−6.8.
Step 2.5.1.1.1
Multiply the exponents in (a-345)1-6.8(a−345)1−6.8.
Step 2.5.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
a-345⋅1-6.8=(-58.1)1-6.8a−345⋅1−6.8=(−58.1)1−6.8
Step 2.5.1.1.1.2
Cancel the common factor of 6.86.8.
Step 2.5.1.1.1.2.1
Move the leading negative in -345−345 into the numerator.
a-345⋅1-6.8=(-58.1)1-6.8a−345⋅1−6.8=(−58.1)1−6.8
Step 2.5.1.1.1.2.2
Factor 6.86.8 out of -34−34.
a6.8(-5)5⋅1-6.8=(-58.1)1-6.8a6.8(−5)5⋅1−6.8=(−58.1)1−6.8
Step 2.5.1.1.1.2.3
Factor 6.86.8 out of -6.8−6.8.
a6.8⋅-55⋅16.8⋅-1=(-58.1)1-6.8a6.8⋅−55⋅16.8⋅−1=(−58.1)1−6.8
Step 2.5.1.1.1.2.4
Cancel the common factor.
a6.8⋅-55⋅16.8⋅-1=(-58.1)1-6.8a6.8⋅−55⋅16.8⋅−1=(−58.1)1−6.8
Step 2.5.1.1.1.2.5
Rewrite the expression.
a-55⋅1-1=(-58.1)1-6.8a−55⋅1−1=(−58.1)1−6.8
a-55⋅1-1=(-58.1)1-6.8a−55⋅1−1=(−58.1)1−6.8
Step 2.5.1.1.1.3
Multiply -55−55 by 1-11−1.
a-55⋅-1=(-58.1)1-6.8a−55⋅−1=(−58.1)1−6.8
Step 2.5.1.1.1.4
Multiply 55 by -1−1.
a-5-5=(-58.1)1-6.8a−5−5=(−58.1)1−6.8
Step 2.5.1.1.1.5
Divide -5−5 by -5−5.
a1=(-58.1)1-6.8a1=(−58.1)1−6.8
a1=(-58.1)1-6.8a1=(−58.1)1−6.8
Step 2.5.1.1.2
Simplify.
a=(-58.1)1-6.8a=(−58.1)1−6.8
a=(-58.1)1-6.8a=(−58.1)1−6.8
a=(-58.1)1-6.8a=(−58.1)1−6.8
Step 2.5.2
Simplify the right side.
Step 2.5.2.1
Simplify (-58.1)1-6.8(−58.1)1−6.8.
Step 2.5.2.1.1
Divide 11 by -6.8−6.8.
a=(-58.1)-0.14705882a=(−58.1)−0.14705882
Step 2.5.2.1.2
Rewrite the expression using the negative exponent rule b-n=1bnb−n=1bn.
a=1(-58.1)0.14705882a=1(−58.1)0.14705882
a=1(-58.1)0.14705882a=1(−58.1)0.14705882
a=1(-58.1)0.14705882a=1(−58.1)0.14705882
a=1(-58.1)0.14705882a=1(−58.1)0.14705882
Step 2.6
Exclude the solutions that do not make 7(-2.1-6.2)=a-6.87(−2.1−6.2)=a−6.8 true.
No solutionNo solution
No solutionNo solution
Step 3
Since there is no real solution, the exponential function cannot be found.
The exponential function cannot be found