Enter a problem...
Finite Math Examples
Step 1
Step 1.1
To find the interval for the first piece, find where the inside of the absolute value is non-negative.
Step 1.2
Solve the inequality.
Step 1.2.1
Cancel the common factor of and .
Step 1.2.1.1
Factor out of .
Step 1.2.1.2
Factor out of .
Step 1.2.1.3
Factor out of .
Step 1.2.1.4
Cancel the common factors.
Step 1.2.1.4.1
Factor out of .
Step 1.2.1.4.2
Cancel the common factor.
Step 1.2.1.4.3
Rewrite the expression.
Step 1.2.1.4.4
Divide by .
Step 1.2.2
Solve for .
Step 1.2.2.1
Subtract from both sides of the inequality.
Step 1.2.2.2
Divide each term in by and simplify.
Step 1.2.2.2.1
Divide each term in by .
Step 1.2.2.2.2
Simplify the left side.
Step 1.2.2.2.2.1
Cancel the common factor of .
Step 1.2.2.2.2.1.1
Cancel the common factor.
Step 1.2.2.2.2.1.2
Divide by .
Step 1.2.2.2.3
Simplify the right side.
Step 1.2.2.2.3.1
Move the negative in front of the fraction.
Step 1.3
In the piece where is non-negative, remove the absolute value.
Step 1.4
To find the interval for the second piece, find where the inside of the absolute value is negative.
Step 1.5
Solve the inequality.
Step 1.5.1
Cancel the common factor of and .
Step 1.5.1.1
Factor out of .
Step 1.5.1.2
Factor out of .
Step 1.5.1.3
Factor out of .
Step 1.5.1.4
Cancel the common factors.
Step 1.5.1.4.1
Factor out of .
Step 1.5.1.4.2
Cancel the common factor.
Step 1.5.1.4.3
Rewrite the expression.
Step 1.5.1.4.4
Divide by .
Step 1.5.2
Solve for .
Step 1.5.2.1
Subtract from both sides of the inequality.
Step 1.5.2.2
Divide each term in by and simplify.
Step 1.5.2.2.1
Divide each term in by .
Step 1.5.2.2.2
Simplify the left side.
Step 1.5.2.2.2.1
Cancel the common factor of .
Step 1.5.2.2.2.1.1
Cancel the common factor.
Step 1.5.2.2.2.1.2
Divide by .
Step 1.5.2.2.3
Simplify the right side.
Step 1.5.2.2.3.1
Move the negative in front of the fraction.
Step 1.6
In the piece where is negative, remove the absolute value and multiply by .
Step 1.7
Write as a piecewise.
Step 1.8
Simplify .
Step 1.8.1
Cancel the common factor of and .
Step 1.8.1.1
Factor out of .
Step 1.8.1.2
Factor out of .
Step 1.8.1.3
Factor out of .
Step 1.8.1.4
Cancel the common factors.
Step 1.8.1.4.1
Factor out of .
Step 1.8.1.4.2
Cancel the common factor.
Step 1.8.1.4.3
Rewrite the expression.
Step 1.8.1.4.4
Divide by .
Step 1.8.2
Add and .
Step 1.9
Simplify .
Step 1.9.1
Simplify each term.
Step 1.9.1.1
Cancel the common factor of and .
Step 1.9.1.1.1
Factor out of .
Step 1.9.1.1.2
Factor out of .
Step 1.9.1.1.3
Factor out of .
Step 1.9.1.1.4
Cancel the common factors.
Step 1.9.1.1.4.1
Factor out of .
Step 1.9.1.1.4.2
Cancel the common factor.
Step 1.9.1.1.4.3
Rewrite the expression.
Step 1.9.1.1.4.4
Divide by .
Step 1.9.1.2
Apply the distributive property.
Step 1.9.1.3
Multiply by .
Step 1.9.1.4
Multiply by .
Step 1.9.2
Add and .
Step 2
Step 2.1
Solve for .
Step 2.1.1
Move all terms not containing to the right side of the inequality.
Step 2.1.1.1
Subtract from both sides of the inequality.
Step 2.1.1.2
Subtract from .
Step 2.1.2
Divide each term in by and simplify.
Step 2.1.2.1
Divide each term in by .
Step 2.1.2.2
Simplify the left side.
Step 2.1.2.2.1
Cancel the common factor of .
Step 2.1.2.2.1.1
Cancel the common factor.
Step 2.1.2.2.1.2
Divide by .
Step 2.1.2.3
Simplify the right side.
Step 2.1.2.3.1
Move the negative in front of the fraction.
Step 2.2
Find the intersection of and .
Step 3
Step 3.1
Solve for .
Step 3.1.1
Move all terms not containing to the right side of the inequality.
Step 3.1.1.1
Subtract from both sides of the inequality.
Step 3.1.1.2
Subtract from .
Step 3.1.2
Divide each term in by and simplify.
Step 3.1.2.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 3.1.2.2
Simplify the left side.
Step 3.1.2.2.1
Cancel the common factor of .
Step 3.1.2.2.1.1
Cancel the common factor.
Step 3.1.2.2.1.2
Divide by .
Step 3.1.2.3
Simplify the right side.
Step 3.1.2.3.1
Dividing two negative values results in a positive value.
Step 3.2
Find the intersection of and .
Step 4
Find the union of the solutions.
All real numbers
Step 5
Convert the inequality to interval notation.
Step 6