Enter a problem...
Finite Math Examples
Step 1
Subtract from both sides of the inequality.
Step 2
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Step 2.3
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 2.4
has factors of and .
Step 2.5
Since has no factors besides and .
is a prime number
Step 2.6
The number is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 2.7
The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either number.
Step 2.8
Multiply .
Step 2.8.1
Multiply by .
Step 2.8.2
Multiply by .
Step 2.9
The factor for is itself.
occurs time.
Step 2.10
The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either term.
Step 2.11
The LCM for is the numeric part multiplied by the variable part.
Step 3
Step 3.1
Multiply each term in by .
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Rewrite using the commutative property of multiplication.
Step 3.2.1.2
Cancel the common factor of .
Step 3.2.1.2.1
Factor out of .
Step 3.2.1.2.2
Factor out of .
Step 3.2.1.2.3
Cancel the common factor.
Step 3.2.1.2.4
Rewrite the expression.
Step 3.2.1.3
Combine and .
Step 3.2.1.4
Cancel the common factor of .
Step 3.2.1.4.1
Cancel the common factor.
Step 3.2.1.4.2
Rewrite the expression.
Step 3.2.1.5
Cancel the common factor of .
Step 3.2.1.5.1
Move the leading negative in into the numerator.
Step 3.2.1.5.2
Factor out of .
Step 3.2.1.5.3
Cancel the common factor.
Step 3.2.1.5.4
Rewrite the expression.
Step 3.2.1.6
Multiply by .
Step 3.2.1.7
Rewrite using the commutative property of multiplication.
Step 3.2.1.8
Multiply by by adding the exponents.
Step 3.2.1.8.1
Move .
Step 3.2.1.8.2
Multiply by .
Step 3.2.1.9
Multiply by .
Step 3.3
Simplify the right side.
Step 3.3.1
Multiply by .
Step 4
Step 4.1
Move all terms containing to the left side of the inequality.
Step 4.1.1
Subtract from both sides of the inequality.
Step 4.1.2
Subtract from .
Step 4.2
Convert the inequality to an equation.
Step 4.3
Use the quadratic formula to find the solutions.
Step 4.4
Substitute the values , , and into the quadratic formula and solve for .
Step 4.5
Simplify.
Step 4.5.1
Simplify the numerator.
Step 4.5.1.1
Raise to the power of .
Step 4.5.1.2
Multiply .
Step 4.5.1.2.1
Multiply by .
Step 4.5.1.2.2
Multiply by .
Step 4.5.1.3
Add and .
Step 4.5.1.4
Rewrite as .
Step 4.5.1.4.1
Factor out of .
Step 4.5.1.4.2
Rewrite as .
Step 4.5.1.5
Pull terms out from under the radical.
Step 4.5.2
Multiply by .
Step 4.5.3
Simplify .
Step 4.5.4
Move the negative in front of the fraction.
Step 4.6
Simplify the expression to solve for the portion of the .
Step 4.6.1
Simplify the numerator.
Step 4.6.1.1
Raise to the power of .
Step 4.6.1.2
Multiply .
Step 4.6.1.2.1
Multiply by .
Step 4.6.1.2.2
Multiply by .
Step 4.6.1.3
Add and .
Step 4.6.1.4
Rewrite as .
Step 4.6.1.4.1
Factor out of .
Step 4.6.1.4.2
Rewrite as .
Step 4.6.1.5
Pull terms out from under the radical.
Step 4.6.2
Multiply by .
Step 4.6.3
Simplify .
Step 4.6.4
Move the negative in front of the fraction.
Step 4.6.5
Change the to .
Step 4.7
Simplify the expression to solve for the portion of the .
Step 4.7.1
Simplify the numerator.
Step 4.7.1.1
Raise to the power of .
Step 4.7.1.2
Multiply .
Step 4.7.1.2.1
Multiply by .
Step 4.7.1.2.2
Multiply by .
Step 4.7.1.3
Add and .
Step 4.7.1.4
Rewrite as .
Step 4.7.1.4.1
Factor out of .
Step 4.7.1.4.2
Rewrite as .
Step 4.7.1.5
Pull terms out from under the radical.
Step 4.7.2
Multiply by .
Step 4.7.3
Simplify .
Step 4.7.4
Move the negative in front of the fraction.
Step 4.7.5
Change the to .
Step 4.8
Consolidate the solutions.
Step 5
Step 5.1
Set the denominator in equal to to find where the expression is undefined.
Step 5.2
Divide each term in by and simplify.
Step 5.2.1
Divide each term in by .
Step 5.2.2
Simplify the left side.
Step 5.2.2.1
Cancel the common factor of .
Step 5.2.2.1.1
Cancel the common factor.
Step 5.2.2.1.2
Divide by .
Step 5.2.3
Simplify the right side.
Step 5.2.3.1
Divide by .
Step 5.3
The domain is all values of that make the expression defined.
Step 6
Use each root to create test intervals.
Step 7
Step 7.1
Test a value on the interval to see if it makes the inequality true.
Step 7.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 7.1.2
Replace with in the original inequality.
Step 7.1.3
The left side is not less than the right side , which means that the given statement is false.
False
False
Step 7.2
Test a value on the interval to see if it makes the inequality true.
Step 7.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 7.2.2
Replace with in the original inequality.
Step 7.2.3
The left side is less than the right side , which means that the given statement is always true.
True
True
Step 7.3
Test a value on the interval to see if it makes the inequality true.
Step 7.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 7.3.2
Replace with in the original inequality.
Step 7.3.3
The left side is not less than the right side , which means that the given statement is false.
False
False
Step 7.4
Test a value on the interval to see if it makes the inequality true.
Step 7.4.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 7.4.2
Replace with in the original inequality.
Step 7.4.3
The left side is less than the right side , which means that the given statement is always true.
True
True
Step 7.5
Compare the intervals to determine which ones satisfy the original inequality.
False
True
False
True
False
True
False
True
Step 8
The solution consists of all of the true intervals.
or
Step 9
Convert the inequality to interval notation.
Step 10