Enter a problem...
Finite Math Examples
log3(2x-3)=2log3(3)+log3(3x-2)log3(2x−3)=2log3(3)+log3(3x−2)
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
Logarithm base 33 of 33 is 11.
log3(2x-3)=2⋅1+log3(3x-2)log3(2x−3)=2⋅1+log3(3x−2)
Step 1.1.2
Multiply 22 by 11.
log3(2x-3)=2+log3(3x-2)log3(2x−3)=2+log3(3x−2)
log3(2x-3)=2+log3(3x-2)log3(2x−3)=2+log3(3x−2)
log3(2x-3)=2+log3(3x-2)log3(2x−3)=2+log3(3x−2)
Step 2
Move all the terms containing a logarithm to the left side of the equation.
log3(2x-3)-log3(3x-2)=2log3(2x−3)−log3(3x−2)=2
Step 3
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy)logb(x)−logb(y)=logb(xy).
log3(2x-33x-2)=2log3(2x−33x−2)=2
Step 4
Rewrite log3(2x-33x-2)=2log3(2x−33x−2)=2 in exponential form using the definition of a logarithm. If xx and bb are positive real numbers and bb≠≠11, then logb(x)=ylogb(x)=y is equivalent to by=xby=x.
32=2x-33x-232=2x−33x−2
Step 5
Cross multiply to remove the fraction.
2x-3=32(3x-2)2x−3=32(3x−2)
Step 6
Step 6.1
Raise 33 to the power of 22.
2x-3=9(3x-2)2x−3=9(3x−2)
Step 6.2
Apply the distributive property.
2x-3=9(3x)+9⋅-22x−3=9(3x)+9⋅−2
Step 6.3
Multiply.
Step 6.3.1
Multiply 33 by 99.
2x-3=27x+9⋅-22x−3=27x+9⋅−2
Step 6.3.2
Multiply 99 by -2−2.
2x-3=27x-182x−3=27x−18
2x-3=27x-182x−3=27x−18
2x-3=27x-182x−3=27x−18
Step 7
Step 7.1
Subtract 27x27x from both sides of the equation.
2x-3-27x=-182x−3−27x=−18
Step 7.2
Subtract 27x27x from 2x2x.
-25x-3=-18−25x−3=−18
-25x-3=-18−25x−3=−18
Step 8
Step 8.1
Add 33 to both sides of the equation.
-25x=-18+3−25x=−18+3
Step 8.2
Add -18−18 and 33.
-25x=-15−25x=−15
-25x=-15−25x=−15
Step 9
Step 9.1
Divide each term in -25x=-15−25x=−15 by -25−25.
-25x-25=-15-25−25x−25=−15−25
Step 9.2
Simplify the left side.
Step 9.2.1
Cancel the common factor of -25−25.
Step 9.2.1.1
Cancel the common factor.
-25x-25=-15-25
Step 9.2.1.2
Divide x by 1.
x=-15-25
x=-15-25
x=-15-25
Step 9.3
Simplify the right side.
Step 9.3.1
Cancel the common factor of -15 and -25.
Step 9.3.1.1
Factor -5 out of -15.
x=-5(3)-25
Step 9.3.1.2
Cancel the common factors.
Step 9.3.1.2.1
Factor -5 out of -25.
x=-5⋅3-5⋅5
Step 9.3.1.2.2
Cancel the common factor.
x=-5⋅3-5⋅5
Step 9.3.1.2.3
Rewrite the expression.
x=35
x=35
x=35
x=35
x=35
Step 10
Exclude the solutions that do not make log3(2x-3)=2log3(3)+log3(3x-2) true.
No solution