Finite Math Examples

Solve for x log base 3 of 2x-3=2 log base 3 of 3+ log base 3 of 3x-2
log3(2x-3)=2log3(3)+log3(3x-2)log3(2x3)=2log3(3)+log3(3x2)
Step 1
Simplify the right side.
Tap for more steps...
Step 1.1
Simplify each term.
Tap for more steps...
Step 1.1.1
Logarithm base 33 of 33 is 11.
log3(2x-3)=21+log3(3x-2)log3(2x3)=21+log3(3x2)
Step 1.1.2
Multiply 22 by 11.
log3(2x-3)=2+log3(3x-2)log3(2x3)=2+log3(3x2)
log3(2x-3)=2+log3(3x-2)log3(2x3)=2+log3(3x2)
log3(2x-3)=2+log3(3x-2)log3(2x3)=2+log3(3x2)
Step 2
Move all the terms containing a logarithm to the left side of the equation.
log3(2x-3)-log3(3x-2)=2log3(2x3)log3(3x2)=2
Step 3
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy)logb(x)logb(y)=logb(xy).
log3(2x-33x-2)=2log3(2x33x2)=2
Step 4
Rewrite log3(2x-33x-2)=2log3(2x33x2)=2 in exponential form using the definition of a logarithm. If xx and bb are positive real numbers and bb11, then logb(x)=ylogb(x)=y is equivalent to by=xby=x.
32=2x-33x-232=2x33x2
Step 5
Cross multiply to remove the fraction.
2x-3=32(3x-2)2x3=32(3x2)
Step 6
Simplify 32(3x-2)32(3x2).
Tap for more steps...
Step 6.1
Raise 33 to the power of 22.
2x-3=9(3x-2)2x3=9(3x2)
Step 6.2
Apply the distributive property.
2x-3=9(3x)+9-22x3=9(3x)+92
Step 6.3
Multiply.
Tap for more steps...
Step 6.3.1
Multiply 33 by 99.
2x-3=27x+9-22x3=27x+92
Step 6.3.2
Multiply 99 by -22.
2x-3=27x-182x3=27x18
2x-3=27x-182x3=27x18
2x-3=27x-182x3=27x18
Step 7
Move all terms containing xx to the left side of the equation.
Tap for more steps...
Step 7.1
Subtract 27x27x from both sides of the equation.
2x-3-27x=-182x327x=18
Step 7.2
Subtract 27x27x from 2x2x.
-25x-3=-1825x3=18
-25x-3=-1825x3=18
Step 8
Move all terms not containing xx to the right side of the equation.
Tap for more steps...
Step 8.1
Add 33 to both sides of the equation.
-25x=-18+325x=18+3
Step 8.2
Add -1818 and 33.
-25x=-1525x=15
-25x=-1525x=15
Step 9
Divide each term in -25x=-1525x=15 by -2525 and simplify.
Tap for more steps...
Step 9.1
Divide each term in -25x=-1525x=15 by -2525.
-25x-25=-15-2525x25=1525
Step 9.2
Simplify the left side.
Tap for more steps...
Step 9.2.1
Cancel the common factor of -2525.
Tap for more steps...
Step 9.2.1.1
Cancel the common factor.
-25x-25=-15-25
Step 9.2.1.2
Divide x by 1.
x=-15-25
x=-15-25
x=-15-25
Step 9.3
Simplify the right side.
Tap for more steps...
Step 9.3.1
Cancel the common factor of -15 and -25.
Tap for more steps...
Step 9.3.1.1
Factor -5 out of -15.
x=-5(3)-25
Step 9.3.1.2
Cancel the common factors.
Tap for more steps...
Step 9.3.1.2.1
Factor -5 out of -25.
x=-53-55
Step 9.3.1.2.2
Cancel the common factor.
x=-53-55
Step 9.3.1.2.3
Rewrite the expression.
x=35
x=35
x=35
x=35
x=35
Step 10
Exclude the solutions that do not make log3(2x-3)=2log3(3)+log3(3x-2) true.
No solution
 [x2  12  π  xdx ]