Enter a problem...
Finite Math Examples
|5x+204|=5∣∣∣5x+204∣∣∣=5
Step 1
Remove the absolute value term. This creates a ±± on the right side of the equation because |x|=±x|x|=±x.
5x+204=±55x+204=±5
Step 2
Step 2.1
First, use the positive value of the ±± to find the first solution.
5x+204=55x+204=5
Step 2.2
Multiply both sides by 44.
5x+204⋅4=5⋅45x+204⋅4=5⋅4
Step 2.3
Simplify.
Step 2.3.1
Simplify the left side.
Step 2.3.1.1
Simplify 5x+204⋅45x+204⋅4.
Step 2.3.1.1.1
Factor 55 out of 5x+205x+20.
Step 2.3.1.1.1.1
Factor 55 out of 5x5x.
5(x)+204⋅4=5⋅45(x)+204⋅4=5⋅4
Step 2.3.1.1.1.2
Factor 55 out of 2020.
5x+5⋅44⋅4=5⋅45x+5⋅44⋅4=5⋅4
Step 2.3.1.1.1.3
Factor 55 out of 5x+5⋅45x+5⋅4.
5(x+4)4⋅4=5⋅45(x+4)4⋅4=5⋅4
5(x+4)4⋅4=5⋅45(x+4)4⋅4=5⋅4
Step 2.3.1.1.2
Cancel the common factor of 44.
Step 2.3.1.1.2.1
Cancel the common factor.
5(x+4)4⋅4=5⋅4
Step 2.3.1.1.2.2
Rewrite the expression.
5(x+4)=5⋅4
5(x+4)=5⋅4
Step 2.3.1.1.3
Apply the distributive property.
5x+5⋅4=5⋅4
Step 2.3.1.1.4
Multiply 5 by 4.
5x+20=5⋅4
5x+20=5⋅4
5x+20=5⋅4
Step 2.3.2
Simplify the right side.
Step 2.3.2.1
Multiply 5 by 4.
5x+20=20
5x+20=20
5x+20=20
Step 2.4
Solve for x.
Step 2.4.1
Move all terms not containing x to the right side of the equation.
Step 2.4.1.1
Subtract 20 from both sides of the equation.
5x=20-20
Step 2.4.1.2
Subtract 20 from 20.
5x=0
5x=0
Step 2.4.2
Divide each term in 5x=0 by 5 and simplify.
Step 2.4.2.1
Divide each term in 5x=0 by 5.
5x5=05
Step 2.4.2.2
Simplify the left side.
Step 2.4.2.2.1
Cancel the common factor of 5.
Step 2.4.2.2.1.1
Cancel the common factor.
5x5=05
Step 2.4.2.2.1.2
Divide x by 1.
x=05
x=05
x=05
Step 2.4.2.3
Simplify the right side.
Step 2.4.2.3.1
Divide 0 by 5.
x=0
x=0
x=0
x=0
Step 2.5
Next, use the negative value of the ± to find the second solution.
5x+204=-5
Step 2.6
Multiply both sides by 4.
5x+204⋅4=-5⋅4
Step 2.7
Simplify.
Step 2.7.1
Simplify the left side.
Step 2.7.1.1
Simplify 5x+204⋅4.
Step 2.7.1.1.1
Factor 5 out of 5x+20.
Step 2.7.1.1.1.1
Factor 5 out of 5x.
5(x)+204⋅4=-5⋅4
Step 2.7.1.1.1.2
Factor 5 out of 20.
5x+5⋅44⋅4=-5⋅4
Step 2.7.1.1.1.3
Factor 5 out of 5x+5⋅4.
5(x+4)4⋅4=-5⋅4
5(x+4)4⋅4=-5⋅4
Step 2.7.1.1.2
Cancel the common factor of 4.
Step 2.7.1.1.2.1
Cancel the common factor.
5(x+4)4⋅4=-5⋅4
Step 2.7.1.1.2.2
Rewrite the expression.
5(x+4)=-5⋅4
5(x+4)=-5⋅4
Step 2.7.1.1.3
Apply the distributive property.
5x+5⋅4=-5⋅4
Step 2.7.1.1.4
Multiply 5 by 4.
5x+20=-5⋅4
5x+20=-5⋅4
5x+20=-5⋅4
Step 2.7.2
Simplify the right side.
Step 2.7.2.1
Multiply -5 by 4.
5x+20=-20
5x+20=-20
5x+20=-20
Step 2.8
Solve for x.
Step 2.8.1
Move all terms not containing x to the right side of the equation.
Step 2.8.1.1
Subtract 20 from both sides of the equation.
5x=-20-20
Step 2.8.1.2
Subtract 20 from -20.
5x=-40
5x=-40
Step 2.8.2
Divide each term in 5x=-40 by 5 and simplify.
Step 2.8.2.1
Divide each term in 5x=-40 by 5.
5x5=-405
Step 2.8.2.2
Simplify the left side.
Step 2.8.2.2.1
Cancel the common factor of 5.
Step 2.8.2.2.1.1
Cancel the common factor.
5x5=-405
Step 2.8.2.2.1.2
Divide x by 1.
x=-405
x=-405
x=-405
Step 2.8.2.3
Simplify the right side.
Step 2.8.2.3.1
Divide -40 by 5.
x=-8
x=-8
x=-8
x=-8
Step 2.9
The complete solution is the result of both the positive and negative portions of the solution.
x=0,-8
x=0,-8