Enter a problem...
Finite Math Examples
12e6.8x=8e3x12e6.8x=8e3x
Step 1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(12e6.8x)=ln(8e3x)ln(12e6.8x)=ln(8e3x)
Step 2
Step 2.1
Rewrite ln(12e6.8x)ln(12e6.8x) as ln(12)+ln(e6.8x)ln(12)+ln(e6.8x).
ln(12)+ln(e6.8x)=ln(8e3x)ln(12)+ln(e6.8x)=ln(8e3x)
Step 2.2
Expand ln(e6.8x)ln(e6.8x) by moving 6.8x6.8x outside the logarithm.
ln(12)+6.8xln(e)=ln(8e3x)ln(12)+6.8xln(e)=ln(8e3x)
Step 2.3
The natural logarithm of ee is 11.
ln(12)+6.8x⋅1=ln(8e3x)ln(12)+6.8x⋅1=ln(8e3x)
Step 2.4
Multiply 6.86.8 by 11.
ln(12)+6.8x=ln(8e3x)ln(12)+6.8x=ln(8e3x)
ln(12)+6.8x=ln(8e3x)ln(12)+6.8x=ln(8e3x)
Step 3
Step 3.1
Rewrite ln(8e3x)ln(8e3x) as ln(8)+ln(e3x)ln(8)+ln(e3x).
ln(12)+6.8x=ln(8)+ln(e3x)ln(12)+6.8x=ln(8)+ln(e3x)
Step 3.2
Expand ln(e3x)ln(e3x) by moving 3x3x outside the logarithm.
ln(12)+6.8x=ln(8)+3xln(e)ln(12)+6.8x=ln(8)+3xln(e)
Step 3.3
The natural logarithm of ee is 11.
ln(12)+6.8x=ln(8)+3x⋅1ln(12)+6.8x=ln(8)+3x⋅1
Step 3.4
Multiply 33 by 11.
ln(12)+6.8x=ln(8)+3xln(12)+6.8x=ln(8)+3x
ln(12)+6.8x=ln(8)+3xln(12)+6.8x=ln(8)+3x
Step 4
Move all the terms containing a logarithm to the left side of the equation.
ln(12)-ln(8)=-6.8x+3xln(12)−ln(8)=−6.8x+3x
Step 5
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy)logb(x)−logb(y)=logb(xy).
ln(128)=-6.8x+3xln(128)=−6.8x+3x
Step 6
Step 6.1
Factor 44 out of 1212.
ln(4(3)8)=-6.8x+3xln(4(3)8)=−6.8x+3x
Step 6.2
Cancel the common factors.
Step 6.2.1
Factor 44 out of 88.
ln(4⋅34⋅2)=-6.8x+3xln(4⋅34⋅2)=−6.8x+3x
Step 6.2.2
Cancel the common factor.
ln(4⋅34⋅2)=-6.8x+3x
Step 6.2.3
Rewrite the expression.
ln(32)=-6.8x+3x
ln(32)=-6.8x+3x
ln(32)=-6.8x+3x
Step 7
Add -6.8x and 3x.
ln(32)=-3.8x
Step 8
Since x is on the right side of the equation, switch the sides so it is on the left side of the equation.
-3.8x=ln(32)
Step 9
Step 9.1
Divide each term in -3.8x=ln(32) by -3.8.
-3.8x-3.8=ln(32)-3.8
Step 9.2
Simplify the left side.
Step 9.2.1
Cancel the common factor of -3.8.
Step 9.2.1.1
Cancel the common factor.
-3.8x-3.8=ln(32)-3.8
Step 9.2.1.2
Divide x by 1.
x=ln(32)-3.8
x=ln(32)-3.8
x=ln(32)-3.8
Step 9.3
Simplify the right side.
Step 9.3.1
Move the negative in front of the fraction.
x=-ln(32)3.8
Step 9.3.2
Replace e with an approximation.
x=-log2.71828182(32)3.8
Step 9.3.3
Divide 3 by 2.
x=-log2.71828182(1.5)3.8
Step 9.3.4
Log base 2.71828182 of 1.5 is approximately 0.4054651.
x=-0.40546513.8
Step 9.3.5
Divide 0.4054651 by 3.8.
x=-1⋅0.10670134
Step 9.3.6
Multiply -1 by 0.10670134.
x=-0.10670134
x=-0.10670134
x=-0.10670134