Enter a problem...
Finite Math Examples
2e2x-5ex+4=02e2x−5ex+4=0
Step 1
Rewrite e2x as exponentiation.
2(ex)2-5ex+4=0
Step 2
Substitute u for ex.
2u2-5u+4=0
Step 3
Step 3.1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 3.2
Substitute the values a=2, b=-5, and c=4 into the quadratic formula and solve for u.
5±√(-5)2-4⋅(2⋅4)2⋅2
Step 3.3
Simplify.
Step 3.3.1
Simplify the numerator.
Step 3.3.1.1
Raise -5 to the power of 2.
u=5±√25-4⋅2⋅42⋅2
Step 3.3.1.2
Multiply -4⋅2⋅4.
Step 3.3.1.2.1
Multiply -4 by 2.
u=5±√25-8⋅42⋅2
Step 3.3.1.2.2
Multiply -8 by 4.
u=5±√25-322⋅2
u=5±√25-322⋅2
Step 3.3.1.3
Subtract 32 from 25.
u=5±√-72⋅2
Step 3.3.1.4
Rewrite -7 as -1(7).
u=5±√-1⋅72⋅2
Step 3.3.1.5
Rewrite √-1(7) as √-1⋅√7.
u=5±√-1⋅√72⋅2
Step 3.3.1.6
Rewrite √-1 as i.
u=5±i√72⋅2
u=5±i√72⋅2
Step 3.3.2
Multiply 2 by 2.
u=5±i√74
u=5±i√74
Step 3.4
The final answer is the combination of both solutions.
u=5+i√74,5-i√74
u=5+i√74,5-i√74
Step 4
Substitute 5+i√74 for u in u=ex.
5+i√74=ex
Step 5
Step 5.1
Rewrite the equation as ex=5+i√74.
ex=5+i√74
Step 5.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(ex)=ln(5+i√74)
Step 5.3
Expand the left side.
Step 5.3.1
Expand ln(ex) by moving x outside the logarithm.
xln(e)=ln(5+i√74)
Step 5.3.2
The natural logarithm of e is 1.
x⋅1=ln(5+i√74)
Step 5.3.3
Multiply x by 1.
x=ln(5+i√74)
x=ln(5+i√74)
Step 5.4
Expand the right side.
Step 5.4.1
Rewrite ln(5+i√74) as ln(5+i√7)-ln(4).
x=ln(5+i√7)-ln(4)
Step 5.4.2
Use n√ax=axn to rewrite √7 as 712.
x=ln(5+i⋅712)-ln(4)
Step 5.4.3
Rewrite ln(4) as ln(22).
x=ln(5+i⋅712)-ln(22)
Step 5.4.4
Expand ln(22) by moving 2 outside the logarithm.
x=ln(5+i⋅712)-(2ln(2))
Step 5.4.5
Multiply 2 by -1.
x=ln(5+i⋅712)-2ln(2)
x=ln(5+i⋅712)-2ln(2)
Step 5.5
Simplify.
Step 5.5.1
Simplify each term.
Step 5.5.1.1
Simplify -2ln(2) by moving 2 inside the logarithm.
x=ln(5+i⋅712)-ln(22)
Step 5.5.1.2
Raise 2 to the power of 2.
x=ln(5+i⋅712)-ln(4)
x=ln(5+i⋅712)-ln(4)
Step 5.5.2
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
x=ln(5+i⋅7124)
x=ln(5+i⋅7124)
x=ln(5+i⋅7124)
Step 6
Substitute 5-i√74 for u in u=ex.
5-i√74=ex
Step 7
Step 7.1
Rewrite the equation as ex=5-i√74.
ex=5-i√74
Step 7.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(ex)=ln(5-i√74)
Step 7.3
Expand the left side.
Step 7.3.1
Expand ln(ex) by moving x outside the logarithm.
xln(e)=ln(5-i√74)
Step 7.3.2
The natural logarithm of e is 1.
x⋅1=ln(5-i√74)
Step 7.3.3
Multiply x by 1.
x=ln(5-i√74)
x=ln(5-i√74)
Step 7.4
Expand the right side.
Step 7.4.1
Rewrite ln(5-i√74) as ln(5-i√7)-ln(4).
x=ln(5-i√7)-ln(4)
Step 7.4.2
Use n√ax=axn to rewrite √7 as 712.
x=ln(5-i⋅712)-ln(4)
Step 7.4.3
Rewrite ln(4) as ln(22).
x=ln(5-i⋅712)-ln(22)
Step 7.4.4
Expand ln(22) by moving 2 outside the logarithm.
x=ln(5-i⋅712)-(2ln(2))
Step 7.4.5
Multiply 2 by -1.
x=ln(5-i⋅712)-2ln(2)
x=ln(5-i⋅712)-2ln(2)
Step 7.5
Simplify.
Step 7.5.1
Simplify each term.
Step 7.5.1.1
Simplify -2ln(2) by moving 2 inside the logarithm.
x=ln(5-i⋅712)-ln(22)
Step 7.5.1.2
Raise 2 to the power of 2.
x=ln(5-i⋅712)-ln(4)
x=ln(5-i⋅712)-ln(4)
Step 7.5.2
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
x=ln(5-i⋅7124)
x=ln(5-i⋅7124)
x=ln(5-i⋅7124)
Step 8
List the solutions that makes the equation true.
x=ln(5+i⋅7124),ln(5-i⋅7124)