Enter a problem...
Finite Math Examples
(x13)5⋅(x-8)-5=(xm)3(x13)5⋅(x−8)−5=(xm)3
Step 1
Rewrite the equation as (xm)3=(x13)5⋅(x-8)-5(xm)3=(x13)5⋅(x−8)−5.
(xm)3=(x13)5⋅(x-8)-5(xm)3=(x13)5⋅(x−8)−5
Step 2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
xm⋅3=(x13)5⋅(x-8)-5xm⋅3=(x13)5⋅(x−8)−5
Step 3
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
xm⋅3=x13⋅5⋅(x-8)-5xm⋅3=x13⋅5⋅(x−8)−5
Step 4
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
xm⋅3=x13⋅5⋅x-8⋅-5xm⋅3=x13⋅5⋅x−8⋅−5
Step 5
Step 5.1
Use the power rule aman=am+naman=am+n to combine exponents.
xm⋅3=x13⋅5-8⋅-5xm⋅3=x13⋅5−8⋅−5
Step 5.2
Simplify each term.
Step 5.2.1
Multiply 1313 by 55.
xm⋅3=x65-8⋅-5xm⋅3=x65−8⋅−5
Step 5.2.2
Multiply -8−8 by -5−5.
xm⋅3=x65+40xm⋅3=x65+40
xm⋅3=x65+40xm⋅3=x65+40
Step 5.3
Add 6565 and 4040.
xm⋅3=x105xm⋅3=x105
xm⋅3=x105xm⋅3=x105
Step 6
Since the bases are the same, then two expressions are only equal if the exponents are also equal.
m⋅3=105m⋅3=105
Step 7
Step 7.1
Divide each term in m⋅3=105m⋅3=105 by 33.
m⋅33=1053m⋅33=1053
Step 7.2
Simplify the left side.
Step 7.2.1
Cancel the common factor of 33.
Step 7.2.1.1
Cancel the common factor.
m⋅33=1053
Step 7.2.1.2
Divide m by 1.
m=1053
m=1053
m=1053
Step 7.3
Simplify the right side.
Step 7.3.1
Divide 105 by 3.
m=35
m=35
m=35