Finite Math Examples

Solve for m (x^13)^5*(x^-8)^-5=(x^m)^3
(x13)5(x-8)-5=(xm)3(x13)5(x8)5=(xm)3
Step 1
Rewrite the equation as (xm)3=(x13)5(x-8)-5(xm)3=(x13)5(x8)5.
(xm)3=(x13)5(x-8)-5(xm)3=(x13)5(x8)5
Step 2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
xm3=(x13)5(x-8)-5xm3=(x13)5(x8)5
Step 3
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
xm3=x135(x-8)-5xm3=x135(x8)5
Step 4
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
xm3=x135x-8-5xm3=x135x85
Step 5
Multiply x135x135 by x-8-5x85 by adding the exponents.
Tap for more steps...
Step 5.1
Use the power rule aman=am+naman=am+n to combine exponents.
xm3=x135-8-5xm3=x13585
Step 5.2
Simplify each term.
Tap for more steps...
Step 5.2.1
Multiply 1313 by 55.
xm3=x65-8-5xm3=x6585
Step 5.2.2
Multiply -88 by -55.
xm3=x65+40xm3=x65+40
xm3=x65+40xm3=x65+40
Step 5.3
Add 6565 and 4040.
xm3=x105xm3=x105
xm3=x105xm3=x105
Step 6
Since the bases are the same, then two expressions are only equal if the exponents are also equal.
m3=105m3=105
Step 7
Divide each term in m3=105m3=105 by 33 and simplify.
Tap for more steps...
Step 7.1
Divide each term in m3=105m3=105 by 33.
m33=1053m33=1053
Step 7.2
Simplify the left side.
Tap for more steps...
Step 7.2.1
Cancel the common factor of 33.
Tap for more steps...
Step 7.2.1.1
Cancel the common factor.
m33=1053
Step 7.2.1.2
Divide m by 1.
m=1053
m=1053
m=1053
Step 7.3
Simplify the right side.
Tap for more steps...
Step 7.3.1
Divide 105 by 3.
m=35
m=35
m=35
 [x2  12  π  xdx ]