Enter a problem...
Finite Math Examples
Step 1
Step 1.1
Expand using the FOIL Method.
Step 1.1.1
Apply the distributive property.
Step 1.1.2
Apply the distributive property.
Step 1.1.3
Apply the distributive property.
Step 1.2
Simplify and combine like terms.
Step 1.2.1
Simplify each term.
Step 1.2.1.1
Rewrite using the commutative property of multiplication.
Step 1.2.1.2
Multiply by by adding the exponents.
Step 1.2.1.2.1
Move .
Step 1.2.1.2.2
Multiply by .
Step 1.2.1.3
Multiply by .
Step 1.2.1.4
Multiply by .
Step 1.2.1.5
Multiply by .
Step 1.2.1.6
Multiply by .
Step 1.2.2
Subtract from .
Step 1.3
Expand by multiplying each term in the first expression by each term in the second expression.
Step 1.4
Simplify terms.
Step 1.4.1
Simplify each term.
Step 1.4.1.1
Rewrite using the commutative property of multiplication.
Step 1.4.1.2
Multiply by by adding the exponents.
Step 1.4.1.2.1
Move .
Step 1.4.1.2.2
Multiply by .
Step 1.4.1.2.2.1
Raise to the power of .
Step 1.4.1.2.2.2
Use the power rule to combine exponents.
Step 1.4.1.2.3
Add and .
Step 1.4.1.3
Multiply by .
Step 1.4.1.4
Multiply by .
Step 1.4.1.5
Rewrite using the commutative property of multiplication.
Step 1.4.1.6
Multiply by by adding the exponents.
Step 1.4.1.6.1
Move .
Step 1.4.1.6.2
Multiply by .
Step 1.4.1.7
Multiply by .
Step 1.4.1.8
Multiply by .
Step 1.4.1.9
Multiply by .
Step 1.4.1.10
Multiply by .
Step 1.4.2
Simplify by adding terms.
Step 1.4.2.1
Subtract from .
Step 1.4.2.2
Add and .
Step 1.5
Expand by multiplying each term in the first expression by each term in the second expression.
Step 1.6
Simplify terms.
Step 1.6.1
Simplify each term.
Step 1.6.1.1
Rewrite using the commutative property of multiplication.
Step 1.6.1.2
Multiply by by adding the exponents.
Step 1.6.1.2.1
Move .
Step 1.6.1.2.2
Multiply by .
Step 1.6.1.2.2.1
Raise to the power of .
Step 1.6.1.2.2.2
Use the power rule to combine exponents.
Step 1.6.1.2.3
Add and .
Step 1.6.1.3
Multiply by .
Step 1.6.1.4
Multiply by .
Step 1.6.1.5
Rewrite using the commutative property of multiplication.
Step 1.6.1.6
Multiply by by adding the exponents.
Step 1.6.1.6.1
Move .
Step 1.6.1.6.2
Multiply by .
Step 1.6.1.6.2.1
Raise to the power of .
Step 1.6.1.6.2.2
Use the power rule to combine exponents.
Step 1.6.1.6.3
Add and .
Step 1.6.1.7
Multiply by .
Step 1.6.1.8
Multiply by .
Step 1.6.1.9
Rewrite using the commutative property of multiplication.
Step 1.6.1.10
Multiply by by adding the exponents.
Step 1.6.1.10.1
Move .
Step 1.6.1.10.2
Multiply by .
Step 1.6.1.11
Multiply by .
Step 1.6.1.12
Multiply by .
Step 1.6.1.13
Multiply by .
Step 1.6.1.14
Multiply by .
Step 1.6.2
Simplify by adding terms.
Step 1.6.2.1
Subtract from .
Step 1.6.2.2
Add and .
Step 1.6.2.3
Subtract from .
Step 2
Subtract from both sides of the equation.
Step 3
Subtract from .
Step 4
Step 4.1
Factor using the rational roots test.
Step 4.1.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 4.1.2
Find every combination of . These are the possible roots of the polynomial function.
Step 4.1.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Step 4.1.3.1
Substitute into the polynomial.
Step 4.1.3.2
Raise to the power of .
Step 4.1.3.3
Multiply by .
Step 4.1.3.4
Raise to the power of .
Step 4.1.3.5
Multiply by .
Step 4.1.3.6
Add and .
Step 4.1.3.7
Raise to the power of .
Step 4.1.3.8
Multiply by .
Step 4.1.3.9
Add and .
Step 4.1.3.10
Multiply by .
Step 4.1.3.11
Add and .
Step 4.1.3.12
Subtract from .
Step 4.1.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 4.1.5
Divide by .
Step 4.1.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+ | - | + | - | - |
Step 4.1.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
+ | - | + | - | - |
Step 4.1.5.3
Multiply the new quotient term by the divisor.
+ | - | + | - | - | |||||||||
+ | + |
Step 4.1.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
+ | - | + | - | - | |||||||||
- | - |
Step 4.1.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- |
Step 4.1.5.6
Pull the next terms from the original dividend down into the current dividend.
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + |
Step 4.1.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
- | |||||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + |
Step 4.1.5.8
Multiply the new quotient term by the divisor.
- | |||||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
- | - |
Step 4.1.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
- | |||||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + |
Step 4.1.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | |||||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ |
Step 4.1.5.11
Pull the next terms from the original dividend down into the current dividend.
- | |||||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | - |
Step 4.1.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | ||||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | - |
Step 4.1.5.13
Multiply the new quotient term by the divisor.
- | + | ||||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | - | ||||||||||||
+ | + |
Step 4.1.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | ||||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | - | ||||||||||||
- | - |
Step 4.1.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | ||||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | - | ||||||||||||
- | - | ||||||||||||
- |
Step 4.1.5.16
Pull the next terms from the original dividend down into the current dividend.
- | + | ||||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | - | ||||||||||||
- | - | ||||||||||||
- | - |
Step 4.1.5.17
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | - | |||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | - | ||||||||||||
- | - | ||||||||||||
- | - |
Step 4.1.5.18
Multiply the new quotient term by the divisor.
- | + | - | |||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | - | ||||||||||||
- | - | ||||||||||||
- | - | ||||||||||||
- | - |
Step 4.1.5.19
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | - | |||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | - | ||||||||||||
- | - | ||||||||||||
- | - | ||||||||||||
+ | + |
Step 4.1.5.20
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | - | |||||||||||
+ | - | + | - | - | |||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | - | ||||||||||||
- | - | ||||||||||||
- | - | ||||||||||||
+ | + | ||||||||||||
Step 4.1.5.21
Since the remander is , the final answer is the quotient.
Step 4.1.6
Write as a set of factors.
Step 4.2
Factor using the rational roots test.
Step 4.2.1
Factor using the rational roots test.
Step 4.2.1.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 4.2.1.2
Find every combination of . These are the possible roots of the polynomial function.
Step 4.2.1.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Step 4.2.1.3.1
Substitute into the polynomial.
Step 4.2.1.3.2
Raise to the power of .
Step 4.2.1.3.3
Multiply by .
Step 4.2.1.3.4
Raise to the power of .
Step 4.2.1.3.5
Multiply by .
Step 4.2.1.3.6
Subtract from .
Step 4.2.1.3.7
Multiply by .
Step 4.2.1.3.8
Add and .
Step 4.2.1.3.9
Subtract from .
Step 4.2.1.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 4.2.1.5
Divide by .
Step 4.2.1.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
- | - | + | - |
Step 4.2.1.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
- | - | + | - |
Step 4.2.1.5.3
Multiply the new quotient term by the divisor.
- | - | + | - | ||||||||
+ | - |
Step 4.2.1.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
- | - | + | - | ||||||||
- | + |
Step 4.2.1.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | - | + | - | ||||||||
- | + | ||||||||||
- |
Step 4.2.1.5.6
Pull the next terms from the original dividend down into the current dividend.
- | - | + | - | ||||||||
- | + | ||||||||||
- | + |
Step 4.2.1.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + |
Step 4.2.1.5.8
Multiply the new quotient term by the divisor.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
- | + |
Step 4.2.1.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - |
Step 4.2.1.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ |
Step 4.2.1.5.11
Pull the next terms from the original dividend down into the current dividend.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Step 4.2.1.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Step 4.2.1.5.13
Multiply the new quotient term by the divisor.
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
+ | - |
Step 4.2.1.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + |
Step 4.2.1.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
Step 4.2.1.5.16
Since the remander is , the final answer is the quotient.
Step 4.2.1.6
Write as a set of factors.
Step 4.2.2
Remove unnecessary parentheses.
Step 5
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 6
Step 6.1
Set equal to .
Step 6.2
Solve for .
Step 6.2.1
Subtract from both sides of the equation.
Step 6.2.2
Divide each term in by and simplify.
Step 6.2.2.1
Divide each term in by .
Step 6.2.2.2
Simplify the left side.
Step 6.2.2.2.1
Cancel the common factor of .
Step 6.2.2.2.1.1
Cancel the common factor.
Step 6.2.2.2.1.2
Divide by .
Step 6.2.2.3
Simplify the right side.
Step 6.2.2.3.1
Move the negative in front of the fraction.
Step 7
Step 7.1
Set equal to .
Step 7.2
Solve for .
Step 7.2.1
Add to both sides of the equation.
Step 7.2.2
Divide each term in by and simplify.
Step 7.2.2.1
Divide each term in by .
Step 7.2.2.2
Simplify the left side.
Step 7.2.2.2.1
Cancel the common factor of .
Step 7.2.2.2.1.1
Cancel the common factor.
Step 7.2.2.2.1.2
Divide by .
Step 8
Step 8.1
Set equal to .
Step 8.2
Solve for .
Step 8.2.1
Use the quadratic formula to find the solutions.
Step 8.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 8.2.3
Simplify.
Step 8.2.3.1
Simplify the numerator.
Step 8.2.3.1.1
Raise to the power of .
Step 8.2.3.1.2
Multiply .
Step 8.2.3.1.2.1
Multiply by .
Step 8.2.3.1.2.2
Multiply by .
Step 8.2.3.1.3
Subtract from .
Step 8.2.3.1.4
Rewrite as .
Step 8.2.3.1.5
Rewrite as .
Step 8.2.3.1.6
Rewrite as .
Step 8.2.3.1.7
Rewrite as .
Step 8.2.3.1.7.1
Factor out of .
Step 8.2.3.1.7.2
Rewrite as .
Step 8.2.3.1.8
Pull terms out from under the radical.
Step 8.2.3.1.9
Move to the left of .
Step 8.2.3.2
Multiply by .
Step 8.2.3.3
Simplify .
Step 8.2.4
The final answer is the combination of both solutions.
Step 9
The final solution is all the values that make true.