Enter a problem...
Finite Math Examples
-5y-2z+√12⋅(x-8+4)-2=32(16)+3x2+2x-5y-2z−5y−2z+√12⋅(x−8+4)−2=32(16)+3x2+2x−5y−2z
Step 1
Step 1.1
Add -8−8 and 44.
-5y-2z+√12(x-4)-2=32(16)+3x2+2x-5y-2z−5y−2z+√12(x−4)−2=32(16)+3x2+2x−5y−2z
Step 1.2
Reorder factors in -5y-2z+√12(x-4)-2−5y−2z+√12(x−4)−2.
-5y-2z+√(x-4)12-2=32(16)+3x2+2x-5y-2z−5y−2z+√(x−4)12−2=32(16)+3x2+2x−5y−2z
Step 1.3
Simplify each term.
Step 1.3.1
Raise 33 to the power of 22.
-5y-2z+√(x-4)12-2=9(16)+3x2+2x-5y-2z−5y−2z+√(x−4)12−2=9(16)+3x2+2x−5y−2z
Step 1.3.2
Cancel the common factor of 33.
Step 1.3.2.1
Factor 33 out of 99.
-5y-2z+√(x-4)12-2=3(3)16+3x2+2x-5y-2z−5y−2z+√(x−4)12−2=3(3)16+3x2+2x−5y−2z
Step 1.3.2.2
Factor 33 out of 66.
-5y-2z+√(x-4)12-2=3⋅313⋅2+3x2+2x-5y-2z−5y−2z+√(x−4)12−2=3⋅313⋅2+3x2+2x−5y−2z
Step 1.3.2.3
Cancel the common factor.
-5y-2z+√(x-4)12-2=3⋅313⋅2+3x2+2x-5y-2z
Step 1.3.2.4
Rewrite the expression.
-5y-2z+√(x-4)12-2=3(12)+3x2+2x-5y-2z
-5y-2z+√(x-4)12-2=3(12)+3x2+2x-5y-2z
Step 1.3.3
Combine 3 and 12.
-5y-2z+√(x-4)12-2=32+3x2+2x-5y-2z
-5y-2z+√(x-4)12-2=32+3x2+2x-5y-2z
-5y-2z+√(x-4)12-2=32+3x2+2x-5y-2z
Step 2
Use n√ax=axn to rewrite √(x-4)(12) as ((x-4)(12))12.
-5y-2z+((x-4)(12))12-2=32+3x2+2x-5y-2z
Step 3
Since x is on the right side of the equation, switch the sides so it is on the left side of the equation.
32+3x2+2x-5y-2z=-5y-2z+((x-4)(12))12-2