Finite Math Examples

Solve for v (4-v)/(6-v)=2/(v-6)
4-v6-v=2v-6
Step 1
Multiply the numerator of the first fraction by the denominator of the second fraction. Set this equal to the product of the denominator of the first fraction and the numerator of the second fraction.
(4-v)(v-6)=(6-v)2
Step 2
Solve the equation for v.
Tap for more steps...
Step 2.1
Simplify (4-v)(v-6).
Tap for more steps...
Step 2.1.1
Rewrite.
0+0+(4-v)(v-6)=(6-v)2
Step 2.1.2
Simplify by adding zeros.
(4-v)(v-6)=(6-v)2
Step 2.1.3
Expand (4-v)(v-6) using the FOIL Method.
Tap for more steps...
Step 2.1.3.1
Apply the distributive property.
4(v-6)-v(v-6)=(6-v)2
Step 2.1.3.2
Apply the distributive property.
4v+4-6-v(v-6)=(6-v)2
Step 2.1.3.3
Apply the distributive property.
4v+4-6-vv-v-6=(6-v)2
4v+4-6-vv-v-6=(6-v)2
Step 2.1.4
Simplify and combine like terms.
Tap for more steps...
Step 2.1.4.1
Simplify each term.
Tap for more steps...
Step 2.1.4.1.1
Multiply 4 by -6.
4v-24-vv-v-6=(6-v)2
Step 2.1.4.1.2
Multiply v by v by adding the exponents.
Tap for more steps...
Step 2.1.4.1.2.1
Move v.
4v-24-(vv)-v-6=(6-v)2
Step 2.1.4.1.2.2
Multiply v by v.
4v-24-v2-v-6=(6-v)2
4v-24-v2-v-6=(6-v)2
Step 2.1.4.1.3
Multiply -6 by -1.
4v-24-v2+6v=(6-v)2
4v-24-v2+6v=(6-v)2
Step 2.1.4.2
Add 4v and 6v.
10v-24-v2=(6-v)2
10v-24-v2=(6-v)2
10v-24-v2=(6-v)2
Step 2.2
Simplify (6-v)2.
Tap for more steps...
Step 2.2.1
Apply the distributive property.
10v-24-v2=62-v2
Step 2.2.2
Multiply.
Tap for more steps...
Step 2.2.2.1
Multiply 6 by 2.
10v-24-v2=12-v2
Step 2.2.2.2
Multiply 2 by -1.
10v-24-v2=12-2v
10v-24-v2=12-2v
10v-24-v2=12-2v
Step 2.3
Move all terms containing v to the left side of the equation.
Tap for more steps...
Step 2.3.1
Add 2v to both sides of the equation.
10v-24-v2+2v=12
Step 2.3.2
Add 10v and 2v.
12v-24-v2=12
12v-24-v2=12
Step 2.4
Subtract 12 from both sides of the equation.
12v-24-v2-12=0
Step 2.5
Subtract 12 from -24.
12v-v2-36=0
Step 2.6
Factor the left side of the equation.
Tap for more steps...
Step 2.6.1
Factor -1 out of 12v-v2-36.
Tap for more steps...
Step 2.6.1.1
Reorder 12v and -v2.
-v2+12v-36=0
Step 2.6.1.2
Factor -1 out of -v2.
-(v2)+12v-36=0
Step 2.6.1.3
Factor -1 out of 12v.
-(v2)-(-12v)-36=0
Step 2.6.1.4
Rewrite -36 as -1(36).
-(v2)-(-12v)-136=0
Step 2.6.1.5
Factor -1 out of -(v2)-(-12v).
-(v2-12v)-136=0
Step 2.6.1.6
Factor -1 out of -(v2-12v)-1(36).
-(v2-12v+36)=0
-(v2-12v+36)=0
Step 2.6.2
Factor using the perfect square rule.
Tap for more steps...
Step 2.6.2.1
Rewrite 36 as 62.
-(v2-12v+62)=0
Step 2.6.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
12v=2v6
Step 2.6.2.3
Rewrite the polynomial.
-(v2-2v6+62)=0
Step 2.6.2.4
Factor using the perfect square trinomial rule a2-2ab+b2=(a-b)2, where a=v and b=6.
-(v-6)2=0
-(v-6)2=0
-(v-6)2=0
Step 2.7
Divide each term in -(v-6)2=0 by -1 and simplify.
Tap for more steps...
Step 2.7.1
Divide each term in -(v-6)2=0 by -1.
-(v-6)2-1=0-1
Step 2.7.2
Simplify the left side.
Tap for more steps...
Step 2.7.2.1
Dividing two negative values results in a positive value.
(v-6)21=0-1
Step 2.7.2.2
Divide (v-6)2 by 1.
(v-6)2=0-1
(v-6)2=0-1
Step 2.7.3
Simplify the right side.
Tap for more steps...
Step 2.7.3.1
Divide 0 by -1.
(v-6)2=0
(v-6)2=0
(v-6)2=0
Step 2.8
Set the v-6 equal to 0.
v-6=0
Step 2.9
Add 6 to both sides of the equation.
v=6
v=6
Step 3
Exclude the solutions that do not make 4-v6-v=2v-6 true.
No solution
 [x2  12  π  xdx ]