Finite Math Examples

Solve for s1 0.1s*1+0.6x*2+0.15c*3=1
0.1s1+0.6x2+0.15c3=1
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Multiply 0.1 by 1.
0.1s+0.6x2+0.15c3=1
Step 1.2
Multiply 2 by 0.6.
0.1s+1.2x+0.15c3=1
Step 1.3
Multiply 3 by 0.15.
0.1s+1.2x+0.45c=1
0.1s+1.2x+0.45c=1
Step 2
Move all terms not containing s to the right side of the equation.
Tap for more steps...
Step 2.1
Subtract 1.2x from both sides of the equation.
0.1s+0.45c=1-1.2x
Step 2.2
Subtract 0.45c from both sides of the equation.
0.1s=1-1.2x-0.45c
0.1s=1-1.2x-0.45c
Step 3
Divide each term in 0.1s=1-1.2x-0.45c by 0.1 and simplify.
Tap for more steps...
Step 3.1
Divide each term in 0.1s=1-1.2x-0.45c by 0.1.
0.1s0.1=10.1+-1.2x0.1+-0.45c0.1
Step 3.2
Simplify the left side.
Tap for more steps...
Step 3.2.1
Cancel the common factor of 0.1.
Tap for more steps...
Step 3.2.1.1
Cancel the common factor.
0.1s0.1=10.1+-1.2x0.1+-0.45c0.1
Step 3.2.1.2
Divide s by 1.
s=10.1+-1.2x0.1+-0.45c0.1
s=10.1+-1.2x0.1+-0.45c0.1
s=10.1+-1.2x0.1+-0.45c0.1
Step 3.3
Simplify the right side.
Tap for more steps...
Step 3.3.1
Simplify each term.
Tap for more steps...
Step 3.3.1.1
Divide 1 by 0.1.
s=10+-1.2x0.1+-0.45c0.1
Step 3.3.1.2
Move the negative in front of the fraction.
s=10-1.2x0.1+-0.45c0.1
Step 3.3.1.3
Factor 1.2 out of 1.2x.
s=10-1.2(x)0.1+-0.45c0.1
Step 3.3.1.4
Factor 0.1 out of 0.1.
s=10-1.2(x)0.1(1)+-0.45c0.1
Step 3.3.1.5
Separate fractions.
s=10-(1.20.1x1)+-0.45c0.1
Step 3.3.1.6
Divide 1.2 by 0.1.
s=10-(12x1)+-0.45c0.1
Step 3.3.1.7
Divide x by 1.
s=10-(12x)+-0.45c0.1
Step 3.3.1.8
Multiply 12 by -1.
s=10-12x+-0.45c0.1
Step 3.3.1.9
Move the negative in front of the fraction.
s=10-12x-0.45c0.1
Step 3.3.1.10
Factor 0.45 out of 0.45c.
s=10-12x-0.45(c)0.1
Step 3.3.1.11
Factor 0.1 out of 0.1.
s=10-12x-0.45(c)0.1(1)
Step 3.3.1.12
Separate fractions.
s=10-12x-(0.450.1c1)
Step 3.3.1.13
Divide 0.45 by 0.1.
s=10-12x-(4.5c1)
Step 3.3.1.14
Divide c by 1.
s=10-12x-(4.5c)
Step 3.3.1.15
Multiply 4.5 by -1.
s=10-12x-4.5c
s=10-12x-4.5c
s=10-12x-4.5c
s=10-12x-4.5c
 [x2  12  π  xdx ]