Enter a problem...
Finite Math Examples
Step 1
Since the radical is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 2
Step 2.1
Cross multiply by setting the product of the numerator of the right side and the denominator of the left side equal to the product of the numerator of the left side and the denominator of the right side.
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Apply the distributive property.
Step 2.2.1.2
Simplify the expression.
Step 2.2.1.2.1
Multiply by .
Step 2.2.1.2.2
Rewrite using the commutative property of multiplication.
Step 3
Step 3.1
Subtract from both sides of the equation.
Step 3.2
Subtract from both sides of the equation.
Step 3.3
Factor out of .
Step 3.3.1
Factor out of .
Step 3.3.2
Factor out of .
Step 3.3.3
Factor out of .
Step 3.4
Divide each term in by and simplify.
Step 3.4.1
Divide each term in by .
Step 3.4.2
Simplify the left side.
Step 3.4.2.1
Cancel the common factor of .
Step 3.4.2.1.1
Cancel the common factor.
Step 3.4.2.1.2
Divide by .
Step 3.4.3
Simplify the right side.
Step 3.4.3.1
Move the negative in front of the fraction.
Step 4
To remove the radical on the left side of the equation, square both sides of the equation.
Step 5
Step 5.1
Use to rewrite as .
Step 5.2
Simplify the left side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Multiply the exponents in .
Step 5.2.1.1.1
Apply the power rule and multiply exponents, .
Step 5.2.1.1.2
Cancel the common factor of .
Step 5.2.1.1.2.1
Cancel the common factor.
Step 5.2.1.1.2.2
Rewrite the expression.
Step 5.2.1.2
Simplify.
Step 5.3
Simplify the right side.
Step 5.3.1
Simplify .
Step 5.3.1.1
Use the power rule to distribute the exponent.
Step 5.3.1.1.1
Apply the product rule to .
Step 5.3.1.1.2
Apply the product rule to .
Step 5.3.1.1.3
Apply the product rule to .
Step 5.3.1.2
Raise to the power of .
Step 5.3.1.3
Multiply by .
Step 6
Step 6.1
Find the LCD of the terms in the equation.
Step 6.1.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 6.1.2
The LCM of one and any expression is the expression.
Step 6.2
Multiply each term in by to eliminate the fractions.
Step 6.2.1
Multiply each term in by .
Step 6.2.2
Simplify the right side.
Step 6.2.2.1
Cancel the common factor of .
Step 6.2.2.1.1
Cancel the common factor.
Step 6.2.2.1.2
Rewrite the expression.
Step 6.3
Solve the equation.
Step 6.3.1
Move all terms containing to the left side of the equation.
Step 6.3.1.1
Subtract from both sides of the equation.
Step 6.3.1.2
Simplify each term.
Step 6.3.1.2.1
Rewrite as .
Step 6.3.1.2.2
Expand using the FOIL Method.
Step 6.3.1.2.2.1
Apply the distributive property.
Step 6.3.1.2.2.2
Apply the distributive property.
Step 6.3.1.2.2.3
Apply the distributive property.
Step 6.3.1.2.3
Simplify and combine like terms.
Step 6.3.1.2.3.1
Simplify each term.
Step 6.3.1.2.3.1.1
Multiply by by adding the exponents.
Step 6.3.1.2.3.1.1.1
Move .
Step 6.3.1.2.3.1.1.2
Multiply by .
Step 6.3.1.2.3.1.2
Multiply by by adding the exponents.
Step 6.3.1.2.3.1.2.1
Move .
Step 6.3.1.2.3.1.2.2
Multiply by .
Step 6.3.1.2.3.1.3
Multiply by .
Step 6.3.1.2.3.1.4
Multiply by .
Step 6.3.1.2.3.1.5
Multiply by .
Step 6.3.1.2.3.1.6
Multiply by .
Step 6.3.1.2.3.2
Subtract from .
Step 6.3.1.2.4
Apply the distributive property.
Step 6.3.1.2.5
Simplify.
Step 6.3.1.2.5.1
Rewrite using the commutative property of multiplication.
Step 6.3.1.2.5.2
Rewrite using the commutative property of multiplication.
Step 6.3.1.2.5.3
Move to the left of .
Step 6.3.1.2.6
Simplify each term.
Step 6.3.1.2.6.1
Multiply by by adding the exponents.
Step 6.3.1.2.6.1.1
Move .
Step 6.3.1.2.6.1.2
Multiply by .
Step 6.3.1.2.6.1.2.1
Raise to the power of .
Step 6.3.1.2.6.1.2.2
Use the power rule to combine exponents.
Step 6.3.1.2.6.1.3
Add and .
Step 6.3.1.2.6.2
Multiply by by adding the exponents.
Step 6.3.1.2.6.2.1
Move .
Step 6.3.1.2.6.2.2
Multiply by .
Step 6.3.2
Factor out of .
Step 6.3.2.1
Factor out of .
Step 6.3.2.2
Factor out of .
Step 6.3.2.3
Factor out of .
Step 6.3.2.4
Factor out of .
Step 6.3.2.5
Factor out of .
Step 6.3.2.6
Factor out of .
Step 6.3.2.7
Factor out of .
Step 6.3.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 6.3.4
Set equal to .
Step 6.3.5
Set equal to and solve for .
Step 6.3.5.1
Set equal to .
Step 6.3.5.2
Solve for .
Step 6.3.5.2.1
Use the quadratic formula to find the solutions.
Step 6.3.5.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 6.3.5.2.3
Simplify.
Step 6.3.5.2.3.1
Simplify the numerator.
Step 6.3.5.2.3.1.1
Apply the distributive property.
Step 6.3.5.2.3.1.2
Multiply by .
Step 6.3.5.2.3.1.3
Multiply .
Step 6.3.5.2.3.1.3.1
Multiply by .
Step 6.3.5.2.3.1.3.2
Multiply by .
Step 6.3.5.2.3.1.4
Rewrite as .
Step 6.3.5.2.3.1.5
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 6.3.5.2.3.1.6
Simplify.
Step 6.3.5.2.3.1.6.1
Factor out of .
Step 6.3.5.2.3.1.6.1.1
Factor out of .
Step 6.3.5.2.3.1.6.1.2
Factor out of .
Step 6.3.5.2.3.1.6.1.3
Factor out of .
Step 6.3.5.2.3.1.6.1.4
Factor out of .
Step 6.3.5.2.3.1.6.1.5
Factor out of .
Step 6.3.5.2.3.1.6.2
Multiply .
Step 6.3.5.2.3.1.6.2.1
Multiply by .
Step 6.3.5.2.3.1.6.2.2
Multiply by .
Step 6.3.5.2.3.1.6.3
Add and .
Step 6.3.5.2.3.1.6.4
Add and .
Step 6.3.5.2.3.1.6.5
Combine exponents.
Step 6.3.5.2.3.1.6.5.1
Factor out negative.
Step 6.3.5.2.3.1.6.5.2
Raise to the power of .
Step 6.3.5.2.3.1.6.5.3
Raise to the power of .
Step 6.3.5.2.3.1.6.5.4
Use the power rule to combine exponents.
Step 6.3.5.2.3.1.6.5.5
Add and .
Step 6.3.5.2.3.1.6.6
Combine exponents.
Step 6.3.5.2.3.1.6.6.1
Multiply by .
Step 6.3.5.2.3.1.6.6.2
Multiply by .
Step 6.3.5.2.3.1.6.6.3
Multiply by .
Step 6.3.5.2.3.1.7
Subtract from .
Step 6.3.5.2.3.1.8
Factor out of .
Step 6.3.5.2.3.1.8.1
Factor out of .
Step 6.3.5.2.3.1.8.2
Factor out of .
Step 6.3.5.2.3.1.8.3
Factor out of .
Step 6.3.5.2.3.1.9
Combine exponents.
Step 6.3.5.2.3.1.9.1
Raise to the power of .
Step 6.3.5.2.3.1.9.2
Use the power rule to combine exponents.
Step 6.3.5.2.3.1.9.3
Add and .
Step 6.3.5.2.3.1.10
Rewrite as .
Step 6.3.5.2.3.1.10.1
Factor out .
Step 6.3.5.2.3.1.10.2
Reorder and .
Step 6.3.5.2.3.1.10.3
Add parentheses.
Step 6.3.5.2.3.1.10.4
Add parentheses.
Step 6.3.5.2.3.1.11
Pull terms out from under the radical.
Step 6.3.5.2.3.2
Multiply by .
Step 6.3.5.2.4
The final answer is the combination of both solutions.
Step 6.3.6
The final solution is all the values that make true.