Enter a problem...
Finite Math Examples
Step 1
Step 1.1
Rewrite as .
Step 1.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 1.3
Factor using the AC method.
Step 1.3.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 1.3.2
Write the factored form using these integers.
Step 1.4
Reduce the expression by cancelling the common factors.
Step 1.4.1
Cancel the common factor.
Step 1.4.2
Rewrite the expression.
Step 2
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 2.2
Remove parentheses.
Step 2.3
The LCM of one and any expression is the expression.
Step 3
Step 3.1
Multiply each term in by .
Step 3.2
Simplify the left side.
Step 3.2.1
Apply the distributive property.
Step 3.2.2
Simplify the expression.
Step 3.2.2.1
Multiply by .
Step 3.2.2.2
Move to the left of .
Step 3.3
Simplify the right side.
Step 3.3.1
Cancel the common factor of .
Step 3.3.1.1
Cancel the common factor.
Step 3.3.1.2
Rewrite the expression.
Step 4
Step 4.1
Move all terms containing to the left side of the equation.
Step 4.1.1
Subtract from both sides of the equation.
Step 4.1.2
Subtract from .
Step 4.2
Subtract from both sides of the equation.
Step 4.3
Use the quadratic formula to find the solutions.
Step 4.4
Substitute the values , , and into the quadratic formula and solve for .
Step 4.5
Simplify.
Step 4.5.1
Simplify the numerator.
Step 4.5.1.1
Raise to the power of .
Step 4.5.1.2
Multiply .
Step 4.5.1.2.1
Multiply by .
Step 4.5.1.2.2
Multiply by .
Step 4.5.1.3
Add and .
Step 4.5.1.4
Rewrite as .
Step 4.5.1.4.1
Factor out of .
Step 4.5.1.4.2
Rewrite as .
Step 4.5.1.5
Pull terms out from under the radical.
Step 4.5.2
Multiply by .
Step 4.5.3
Simplify .
Step 4.6
The final answer is the combination of both solutions.
Step 5
The result can be shown in multiple forms.
Exact Form:
Decimal Form: