Enter a problem...
Finite Math Examples
log(10)x+log(10)⋅3=2log(10)⋅4-log(10)⋅2log(10)x+log(10)⋅3=2log(10)⋅4−log(10)⋅2
Step 1
Step 1.1
Simplify the left side.
Step 1.1.1
Move 33 to the left of log(10)log(10).
log(10)x+3log(10)=2log(10)⋅4-log(10)⋅2log(10)x+3log(10)=2log(10)⋅4−log(10)⋅2
log(10)x+3log(10)=2log(10)⋅4-log(10)⋅2log(10)x+3log(10)=2log(10)⋅4−log(10)⋅2
Step 1.2
Simplify the right side.
Step 1.2.1
Simplify 2log(10)⋅4-log(10)⋅22log(10)⋅4−log(10)⋅2.
Step 1.2.1.1
Simplify each term.
Step 1.2.1.1.1
Multiply 44 by 22.
log(10)x+3log(10)=8log(10)-log(10)⋅2log(10)x+3log(10)=8log(10)−log(10)⋅2
Step 1.2.1.1.2
Multiply 22 by -1−1.
log(10)x+3log(10)=8log(10)-2log(10)log(10)x+3log(10)=8log(10)−2log(10)
log(10)x+3log(10)=8log(10)-2log(10)log(10)x+3log(10)=8log(10)−2log(10)
Step 1.2.1.2
Subtract 2log(10)2log(10) from 8log(10)8log(10).
log(10)x+3log(10)=6log(10)log(10)x+3log(10)=6log(10)
log(10)x+3log(10)=6log(10)log(10)x+3log(10)=6log(10)
log(10)x+3log(10)=6log(10)log(10)x+3log(10)=6log(10)
log(10)x+3log(10)=6log(10)log(10)x+3log(10)=6log(10)
Step 2
Move all the terms containing a logarithm to the left side of the equation.
log(10)x+3log(10)-6log(10)=0log(10)x+3log(10)−6log(10)=0
Step 3
Step 3.1
Logarithm base 1010 of 1010 is 11.
1x+3log(10)-6log(10)=01x+3log(10)−6log(10)=0
Step 3.2
Multiply xx by 11.
x+3log(10)-6log(10)=0x+3log(10)−6log(10)=0
Step 3.3
Logarithm base 1010 of 1010 is 11.
x+3⋅1-6log(10)=0x+3⋅1−6log(10)=0
Step 3.4
Multiply 33 by 11.
x+3-6log(10)=0x+3−6log(10)=0
Step 3.5
Logarithm base 1010 of 1010 is 11.
x+3-6⋅1=0x+3−6⋅1=0
Step 3.6
Multiply -6−6 by 11.
x+3-6=0x+3−6=0
x+3-6=0x+3−6=0
Step 4
Subtract 66 from 33.
x-3=0x−3=0
Step 5
Add 33 to both sides of the equation.
x=3x=3