Finite Math Examples

Expand Using Pascal's Triangle (3x-2)^5
(3x-2)5
Step 1
Pascal's Triangle can be displayed as such:
1
1-1
1-2-1
1-3-3-1
1-4-6-4-1
1-5-10-10-5-1
The triangle can be used to calculate the coefficients of the expansion of (a+b)n by taking the exponent n and adding 1. The coefficients will correspond with line n+1 of the triangle. For (3x-2)5, n=5 so the coefficients of the expansion will correspond with line 6.
Step 2
The expansion follows the rule (a+b)n=c0anb0+c1an-1b1+cn-1a1bn-1+cna0bn. The values of the coefficients, from the triangle, are 1-5-10-10-5-1.
1a5b0+5a4b+10a3b2+10a2b3+5ab4+1a0b5
Step 3
Substitute the actual values of a 3x and b -2 into the expression.
1(3x)5(-2)0+5(3x)4(-2)1+10(3x)3(-2)2+10(3x)2(-2)3+5(3x)1(-2)4+1(3x)0(-2)5
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
Multiply (3x)5 by 1.
(3x)5(-2)0+5(3x)4(-2)1+10(3x)3(-2)2+10(3x)2(-2)3+5(3x)1(-2)4+1(3x)0(-2)5
Step 4.2
Apply the product rule to 3x.
35x5(-2)0+5(3x)4(-2)1+10(3x)3(-2)2+10(3x)2(-2)3+5(3x)1(-2)4+1(3x)0(-2)5
Step 4.3
Raise 3 to the power of 5.
243x5(-2)0+5(3x)4(-2)1+10(3x)3(-2)2+10(3x)2(-2)3+5(3x)1(-2)4+1(3x)0(-2)5
Step 4.4
Anything raised to 0 is 1.
243x51+5(3x)4(-2)1+10(3x)3(-2)2+10(3x)2(-2)3+5(3x)1(-2)4+1(3x)0(-2)5
Step 4.5
Multiply 243 by 1.
243x5+5(3x)4(-2)1+10(3x)3(-2)2+10(3x)2(-2)3+5(3x)1(-2)4+1(3x)0(-2)5
Step 4.6
Apply the product rule to 3x.
243x5+5(34x4)(-2)1+10(3x)3(-2)2+10(3x)2(-2)3+5(3x)1(-2)4+1(3x)0(-2)5
Step 4.7
Raise 3 to the power of 4.
243x5+5(81x4)(-2)1+10(3x)3(-2)2+10(3x)2(-2)3+5(3x)1(-2)4+1(3x)0(-2)5
Step 4.8
Multiply 81 by 5.
243x5+405x4(-2)1+10(3x)3(-2)2+10(3x)2(-2)3+5(3x)1(-2)4+1(3x)0(-2)5
Step 4.9
Evaluate the exponent.
243x5+405x4-2+10(3x)3(-2)2+10(3x)2(-2)3+5(3x)1(-2)4+1(3x)0(-2)5
Step 4.10
Multiply -2 by 405.
243x5-810x4+10(3x)3(-2)2+10(3x)2(-2)3+5(3x)1(-2)4+1(3x)0(-2)5
Step 4.11
Apply the product rule to 3x.
243x5-810x4+10(33x3)(-2)2+10(3x)2(-2)3+5(3x)1(-2)4+1(3x)0(-2)5
Step 4.12
Raise 3 to the power of 3.
243x5-810x4+10(27x3)(-2)2+10(3x)2(-2)3+5(3x)1(-2)4+1(3x)0(-2)5
Step 4.13
Multiply 27 by 10.
243x5-810x4+270x3(-2)2+10(3x)2(-2)3+5(3x)1(-2)4+1(3x)0(-2)5
Step 4.14
Raise -2 to the power of 2.
243x5-810x4+270x34+10(3x)2(-2)3+5(3x)1(-2)4+1(3x)0(-2)5
Step 4.15
Multiply 4 by 270.
243x5-810x4+1080x3+10(3x)2(-2)3+5(3x)1(-2)4+1(3x)0(-2)5
Step 4.16
Apply the product rule to 3x.
243x5-810x4+1080x3+10(32x2)(-2)3+5(3x)1(-2)4+1(3x)0(-2)5
Step 4.17
Raise 3 to the power of 2.
243x5-810x4+1080x3+10(9x2)(-2)3+5(3x)1(-2)4+1(3x)0(-2)5
Step 4.18
Multiply 9 by 10.
243x5-810x4+1080x3+90x2(-2)3+5(3x)1(-2)4+1(3x)0(-2)5
Step 4.19
Raise -2 to the power of 3.
243x5-810x4+1080x3+90x2-8+5(3x)1(-2)4+1(3x)0(-2)5
Step 4.20
Multiply -8 by 90.
243x5-810x4+1080x3-720x2+5(3x)1(-2)4+1(3x)0(-2)5
Step 4.21
Simplify.
243x5-810x4+1080x3-720x2+5(3x)(-2)4+1(3x)0(-2)5
Step 4.22
Multiply 3 by 5.
243x5-810x4+1080x3-720x2+15x(-2)4+1(3x)0(-2)5
Step 4.23
Raise -2 to the power of 4.
243x5-810x4+1080x3-720x2+15x16+1(3x)0(-2)5
Step 4.24
Multiply 16 by 15.
243x5-810x4+1080x3-720x2+240x+1(3x)0(-2)5
Step 4.25
Multiply (3x)0 by 1.
243x5-810x4+1080x3-720x2+240x+(3x)0(-2)5
Step 4.26
Apply the product rule to 3x.
243x5-810x4+1080x3-720x2+240x+30x0(-2)5
Step 4.27
Anything raised to 0 is 1.
243x5-810x4+1080x3-720x2+240x+1x0(-2)5
Step 4.28
Multiply x0 by 1.
243x5-810x4+1080x3-720x2+240x+x0(-2)5
Step 4.29
Anything raised to 0 is 1.
243x5-810x4+1080x3-720x2+240x+1(-2)5
Step 4.30
Multiply (-2)5 by 1.
243x5-810x4+1080x3-720x2+240x+(-2)5
Step 4.31
Raise -2 to the power of 5.
243x5-810x4+1080x3-720x2+240x-32
243x5-810x4+1080x3-720x2+240x-32
 [x2  12  π  xdx ]