Enter a problem...
Finite Math Examples
√ab-1b⋅√ab3-a√49a9+√81a3-103⋅(a√a)√ab−1b⋅√ab3−a√49a9+√81a3−103⋅(a√a)
Step 1
Step 1.1
Rewrite ab3ab3 as b2(ab)b2(ab).
Step 1.1.1
Factor out b2b2.
√ab-1b⋅√a(b2b)-a√49a9+√81a3-103⋅(a√a)√ab−1b⋅√a(b2b)−a√49a9+√81a3−103⋅(a√a)
Step 1.1.2
Reorder aa and b2b2.
√ab-1b⋅√b2ab-a√49a9+√81a3-103⋅(a√a)√ab−1b⋅√b2ab−a√49a9+√81a3−103⋅(a√a)
Step 1.1.3
Add parentheses.
√ab-1b⋅√b2(ab)-a√49a9+√81a3-103⋅(a√a)√ab−1b⋅√b2(ab)−a√49a9+√81a3−103⋅(a√a)
√ab-1b⋅√b2(ab)-a√49a9+√81a3-103⋅(a√a)√ab−1b⋅√b2(ab)−a√49a9+√81a3−103⋅(a√a)
Step 1.2
Pull terms out from under the radical.
√ab-1b⋅(b√ab)-a√49a9+√81a3-103⋅(a√a)√ab−1b⋅(b√ab)−a√49a9+√81a3−103⋅(a√a)
Step 1.3
Cancel the common factor of bb.
Step 1.3.1
Move the leading negative in -1b−1b into the numerator.
√ab+-1b⋅(b√ab)-a√49a9+√81a3-103⋅(a√a)√ab+−1b⋅(b√ab)−a√49a9+√81a3−103⋅(a√a)
Step 1.3.2
Factor bb out of b√abb√ab.
√ab+-1b⋅(b(√ab))-a√49a9+√81a3-103⋅(a√a)√ab+−1b⋅(b(√ab))−a√49a9+√81a3−103⋅(a√a)
Step 1.3.3
Cancel the common factor.
√ab+-1b⋅(b√ab)-a√49a9+√81a3-103⋅(a√a)
Step 1.3.4
Rewrite the expression.
√ab-1⋅√ab-a√49a9+√81a3-103⋅(a√a)
√ab-1⋅√ab-a√49a9+√81a3-103⋅(a√a)
Step 1.4
Rewrite -1√ab as -√ab.
√ab-√ab-a√49a9+√81a3-103⋅(a√a)
Step 1.5
Rewrite 49a9 as (73)2a.
Step 1.5.1
Factor the perfect power 72 out of 49a.
√ab-√ab-a√72a9+√81a3-103⋅(a√a)
Step 1.5.2
Factor the perfect power 32 out of 9.
√ab-√ab-a√72a32⋅1+√81a3-103⋅(a√a)
Step 1.5.3
Rearrange the fraction 72a32⋅1.
√ab-√ab-a√(73)2a+√81a3-103⋅(a√a)
√ab-√ab-a√(73)2a+√81a3-103⋅(a√a)
Step 1.6
Pull terms out from under the radical.
√ab-√ab-a(73√a)+√81a3-103⋅(a√a)
Step 1.7
Combine 73 and √a.
√ab-√ab-a7√a3+√81a3-103⋅(a√a)
Step 1.8
Combine 7√a3 and a.
√ab-√ab-7√aa3+√81a3-103⋅(a√a)
Step 1.9
Rewrite 81a3 as (9a)2a.
Step 1.9.1
Rewrite 81 as 92.
√ab-√ab-7√aa3+√92a3-103⋅(a√a)
Step 1.9.2
Factor out a2.
√ab-√ab-7√aa3+√92(a2a)-103⋅(a√a)
Step 1.9.3
Rewrite 92a2 as (9a)2.
√ab-√ab-7√aa3+√(9a)2a-103⋅(a√a)
√ab-√ab-7√aa3+√(9a)2a-103⋅(a√a)
Step 1.10
Pull terms out from under the radical.
√ab-√ab-7√aa3+9a√a-103⋅(a√a)
Step 1.11
Multiply -103(a√a).
Step 1.11.1
Combine a and 103.
√ab-√ab-7√aa3+9a√a-a⋅103√a
Step 1.11.2
Combine √a and a⋅103.
√ab-√ab-7√aa3+9a√a-√a(a⋅10)3
√ab-√ab-7√aa3+9a√a-√a(a⋅10)3
Step 1.12
Remove unnecessary parentheses.
√ab-√ab-7√aa3+9a√a-√aa⋅103
Step 1.13
Move 10 to the left of √aa.
√ab-√ab-7√aa3+9a√a-10√aa3
√ab-√ab-7√aa3+9a√a-10√aa3
Step 2
Step 2.1
Subtract √ab from √ab.
0-7√aa3+9a√a-10√aa3
Step 2.2
Subtract 7√aa3 from 0.
-7√aa3+9a√a-10√aa3
Step 2.3
Combine the numerators over the common denominator.
9a√a+-7√aa-10√aa3
Step 2.4
Subtract 10√aa from -7√aa.
9a√a+-17√aa3
Step 2.5
Move the negative in front of the fraction.
9a√a-17√aa3
9a√a-17√aa3
Step 3
To write 9a√a as a fraction with a common denominator, multiply by 33.
9a√a⋅33-17√aa3
Step 4
Step 4.1
Combine 9a√a and 33.
9a√a⋅33-17√aa3
Step 4.2
Combine the numerators over the common denominator.
9a√a⋅3-17√aa3
9a√a⋅3-17√aa3
Step 5
Step 5.1
Factor a√a out of 9a√a⋅3-17√aa.
Step 5.1.1
Factor a√a out of 9a√a⋅3.
a√a(9⋅3)-17√aa3
Step 5.1.2
Factor a√a out of -17√aa.
a√a(9⋅3)+a√a(-17)3
Step 5.1.3
Factor a√a out of a√a(9⋅3)+a√a(-17).
a√a(9⋅3-17)3
a√a(9⋅3-17)3
Step 5.2
Multiply 9 by 3.
a√a(27-17)3
Step 5.3
Subtract 17 from 27.
a√a⋅103
a√a⋅103
Step 6
Move 10 to the left of a√a.
10a√a3