Finite Math Examples

Simplify square root of ab-1/b* square root of ab^3-a square root of (49a)/9+ square root of 81a^3-10/3*(a square root of a)
ab-1bab3-a49a9+81a3-103(aa)ab1bab3a49a9+81a3103(aa)
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Rewrite ab3ab3 as b2(ab)b2(ab).
Tap for more steps...
Step 1.1.1
Factor out b2b2.
ab-1ba(b2b)-a49a9+81a3-103(aa)ab1ba(b2b)a49a9+81a3103(aa)
Step 1.1.2
Reorder aa and b2b2.
ab-1bb2ab-a49a9+81a3-103(aa)ab1bb2aba49a9+81a3103(aa)
Step 1.1.3
Add parentheses.
ab-1bb2(ab)-a49a9+81a3-103(aa)ab1bb2(ab)a49a9+81a3103(aa)
ab-1bb2(ab)-a49a9+81a3-103(aa)ab1bb2(ab)a49a9+81a3103(aa)
Step 1.2
Pull terms out from under the radical.
ab-1b(bab)-a49a9+81a3-103(aa)ab1b(bab)a49a9+81a3103(aa)
Step 1.3
Cancel the common factor of bb.
Tap for more steps...
Step 1.3.1
Move the leading negative in -1b1b into the numerator.
ab+-1b(bab)-a49a9+81a3-103(aa)ab+1b(bab)a49a9+81a3103(aa)
Step 1.3.2
Factor bb out of babbab.
ab+-1b(b(ab))-a49a9+81a3-103(aa)ab+1b(b(ab))a49a9+81a3103(aa)
Step 1.3.3
Cancel the common factor.
ab+-1b(bab)-a49a9+81a3-103(aa)
Step 1.3.4
Rewrite the expression.
ab-1ab-a49a9+81a3-103(aa)
ab-1ab-a49a9+81a3-103(aa)
Step 1.4
Rewrite -1ab as -ab.
ab-ab-a49a9+81a3-103(aa)
Step 1.5
Rewrite 49a9 as (73)2a.
Tap for more steps...
Step 1.5.1
Factor the perfect power 72 out of 49a.
ab-ab-a72a9+81a3-103(aa)
Step 1.5.2
Factor the perfect power 32 out of 9.
ab-ab-a72a321+81a3-103(aa)
Step 1.5.3
Rearrange the fraction 72a321.
ab-ab-a(73)2a+81a3-103(aa)
ab-ab-a(73)2a+81a3-103(aa)
Step 1.6
Pull terms out from under the radical.
ab-ab-a(73a)+81a3-103(aa)
Step 1.7
Combine 73 and a.
ab-ab-a7a3+81a3-103(aa)
Step 1.8
Combine 7a3 and a.
ab-ab-7aa3+81a3-103(aa)
Step 1.9
Rewrite 81a3 as (9a)2a.
Tap for more steps...
Step 1.9.1
Rewrite 81 as 92.
ab-ab-7aa3+92a3-103(aa)
Step 1.9.2
Factor out a2.
ab-ab-7aa3+92(a2a)-103(aa)
Step 1.9.3
Rewrite 92a2 as (9a)2.
ab-ab-7aa3+(9a)2a-103(aa)
ab-ab-7aa3+(9a)2a-103(aa)
Step 1.10
Pull terms out from under the radical.
ab-ab-7aa3+9aa-103(aa)
Step 1.11
Multiply -103(aa).
Tap for more steps...
Step 1.11.1
Combine a and 103.
ab-ab-7aa3+9aa-a103a
Step 1.11.2
Combine a and a103.
ab-ab-7aa3+9aa-a(a10)3
ab-ab-7aa3+9aa-a(a10)3
Step 1.12
Remove unnecessary parentheses.
ab-ab-7aa3+9aa-aa103
Step 1.13
Move 10 to the left of aa.
ab-ab-7aa3+9aa-10aa3
ab-ab-7aa3+9aa-10aa3
Step 2
Simplify terms.
Tap for more steps...
Step 2.1
Subtract ab from ab.
0-7aa3+9aa-10aa3
Step 2.2
Subtract 7aa3 from 0.
-7aa3+9aa-10aa3
Step 2.3
Combine the numerators over the common denominator.
9aa+-7aa-10aa3
Step 2.4
Subtract 10aa from -7aa.
9aa+-17aa3
Step 2.5
Move the negative in front of the fraction.
9aa-17aa3
9aa-17aa3
Step 3
To write 9aa as a fraction with a common denominator, multiply by 33.
9aa33-17aa3
Step 4
Simplify terms.
Tap for more steps...
Step 4.1
Combine 9aa and 33.
9aa33-17aa3
Step 4.2
Combine the numerators over the common denominator.
9aa3-17aa3
9aa3-17aa3
Step 5
Simplify the numerator.
Tap for more steps...
Step 5.1
Factor aa out of 9aa3-17aa.
Tap for more steps...
Step 5.1.1
Factor aa out of 9aa3.
aa(93)-17aa3
Step 5.1.2
Factor aa out of -17aa.
aa(93)+aa(-17)3
Step 5.1.3
Factor aa out of aa(93)+aa(-17).
aa(93-17)3
aa(93-17)3
Step 5.2
Multiply 9 by 3.
aa(27-17)3
Step 5.3
Subtract 17 from 27.
aa103
aa103
Step 6
Move 10 to the left of aa.
10aa3
 [x2  12  π  xdx ]