Finite Math Examples

Simplify 7a^7(5a-6)-(5a-6)
7a7(5a-6)-(5a-6)7a7(5a6)(5a6)
Step 1
Apply the distributive property.
7a7(5a)+7a7-6-(5a-6)7a7(5a)+7a76(5a6)
Step 2
Rewrite using the commutative property of multiplication.
75a7a+7a7-6-(5a-6)75a7a+7a76(5a6)
Step 3
Multiply -66 by 77.
75a7a-42a7-(5a-6)75a7a42a7(5a6)
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
Multiply a7a7 by aa by adding the exponents.
Tap for more steps...
Step 4.1.1
Move aa.
75(aa7)-42a7-(5a-6)75(aa7)42a7(5a6)
Step 4.1.2
Multiply aa by a7a7.
Tap for more steps...
Step 4.1.2.1
Raise aa to the power of 11.
75(a1a7)-42a7-(5a-6)75(a1a7)42a7(5a6)
Step 4.1.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
75a1+7-42a7-(5a-6)75a1+742a7(5a6)
75a1+7-42a7-(5a-6)75a1+742a7(5a6)
Step 4.1.3
Add 11 and 77.
75a8-42a7-(5a-6)75a842a7(5a6)
75a8-42a7-(5a-6)75a842a7(5a6)
Step 4.2
Multiply 77 by 55.
35a8-42a7-(5a-6)35a842a7(5a6)
35a8-42a7-(5a-6)35a842a7(5a6)
Step 5
Apply the distributive property.
35a8-42a7-(5a)--635a842a7(5a)6
Step 6
Multiply 55 by -11.
35a8-42a7-5a--635a842a75a6
Step 7
Multiply -11 by -66.
35a8-42a7-5a+635a842a75a+6
 [x2  12  π  xdx ]  x2  12  π  xdx