Enter a problem...
Finite Math Examples
9a2(3-a)2-1(aa-3+12a2-9a27-a3+9a2+3a+9)9a2(3−a)2−1(aa−3+12a2−9a27−a3+9a2+3a+9)
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
Factor 3a out of 12a2-9a.
Step 1.1.1.1
Factor 3a out of 12a2.
9a2(3-a)2-1(aa-3+3a(4a)-9a27-a3+9a2+3a+9)
Step 1.1.1.2
Factor 3a out of -9a.
9a2(3-a)2-1(aa-3+3a(4a)+3a(-3)27-a3+9a2+3a+9)
Step 1.1.1.3
Factor 3a out of 3a(4a)+3a(-3).
9a2(3-a)2-1(aa-3+3a(4a-3)27-a3+9a2+3a+9)
9a2(3-a)2-1(aa-3+3a(4a-3)27-a3+9a2+3a+9)
Step 1.1.2
Simplify the denominator.
Step 1.1.2.1
Rewrite 27 as 33.
9a2(3-a)2-1(aa-3+3a(4a-3)33-a3+9a2+3a+9)
Step 1.1.2.2
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2) where a=3 and b=a.
9a2(3-a)2-1(aa-3+3a(4a-3)(3-a)(32+3a+a2)+9a2+3a+9)
Step 1.1.2.3
Raise 3 to the power of 2.
9a2(3-a)2-1(aa-3+3a(4a-3)(3-a)(9+3a+a2)+9a2+3a+9)
9a2(3-a)2-1(aa-3+3a(4a-3)(3-a)(9+3a+a2)+9a2+3a+9)
9a2(3-a)2-1(aa-3+3a(4a-3)(3-a)(9+3a+a2)+9a2+3a+9)
Step 1.2
Rewrite 3 as -1(-3).
9a2(3-a)2-1(aa-3+3a(4a-3)(-1(-3)-a)(9+3a+a2)+9a2+3a+9)
Step 1.3
Factor -1 out of -a.
9a2(3-a)2-1(aa-3+3a(4a-3)(-1(-3)-(a))(9+3a+a2)+9a2+3a+9)
Step 1.4
Factor -1 out of -1(-3)-(a).
9a2(3-a)2-1(aa-3+3a(4a-3)-1(-3+a)(9+3a+a2)+9a2+3a+9)
Step 1.5
Move a negative from the denominator of 3a(4a-3)-1(-3+a)(9+3a+a2) to the numerator.
9a2(3-a)2-1(aa-3+-(3a(4a-3))(-3+a)(9+3a+a2)+9a2+3a+9)
Step 1.6
Reorder terms.
9a2(3-a)2-1(aa-3+-(3a(4a-3))(a-3)(9+3a+a2)+9a2+3a+9)
Step 1.7
To write aa-3 as a fraction with a common denominator, multiply by 9+3a+a29+3a+a2.
9a2(3-a)2-1(aa-3⋅9+3a+a29+3a+a2+-(3a(4a-3))(a-3)(9+3a+a2)+9a2+3a+9)
Step 1.8
Multiply aa-3 by 9+3a+a29+3a+a2.
9a2(3-a)2-1(a(9+3a+a2)(a-3)(9+3a+a2)+-(3a(4a-3))(a-3)(9+3a+a2)+9a2+3a+9)
Step 1.9
Combine the numerators over the common denominator.
9a2(3-a)2-1(a(9+3a+a2)-(3a(4a-3))(a-3)(9+3a+a2)+9a2+3a+9)
Step 1.10
Simplify each term.
Step 1.10.1
Simplify the numerator.
Step 1.10.1.1
Factor a out of a(9+3a+a2)-1⋅3a(4a-3).
Step 1.10.1.1.1
Factor a out of -1⋅3a(4a-3).
9a2(3-a)2-1(a(9+3a+a2)+a(-1⋅3(4a-3))(a-3)(9+3a+a2)+9a2+3a+9)
Step 1.10.1.1.2
Factor a out of a(9+3a+a2)+a(-1⋅3(4a-3)).
9a2(3-a)2-1(a(9+3a+a2-1⋅3(4a-3))(a-3)(9+3a+a2)+9a2+3a+9)
9a2(3-a)2-1(a(9+3a+a2-1⋅3(4a-3))(a-3)(9+3a+a2)+9a2+3a+9)
Step 1.10.1.2
Multiply -1 by 3.
9a2(3-a)2-1(a(9+3a+a2-3(4a-3))(a-3)(9+3a+a2)+9a2+3a+9)
Step 1.10.1.3
Apply the distributive property.
9a2(3-a)2-1(a(9+3a+a2-3(4a)-3⋅-3)(a-3)(9+3a+a2)+9a2+3a+9)
Step 1.10.1.4
Multiply 4 by -3.
9a2(3-a)2-1(a(9+3a+a2-12a-3⋅-3)(a-3)(9+3a+a2)+9a2+3a+9)
Step 1.10.1.5
Multiply -3 by -3.
9a2(3-a)2-1(a(9+3a+a2-12a+9)(a-3)(9+3a+a2)+9a2+3a+9)
Step 1.10.1.6
Add 9 and 9.
9a2(3-a)2-1(a(3a+a2-12a+18)(a-3)(9+3a+a2)+9a2+3a+9)
Step 1.10.1.7
Subtract 12a from 3a.
9a2(3-a)2-1(a(a2-9a+18)(a-3)(9+3a+a2)+9a2+3a+9)
Step 1.10.1.8
Factor a2-9a+18 using the AC method.
Step 1.10.1.8.1
Consider the form x2+bx+c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is 18 and whose sum is -9.
-6,-3
Step 1.10.1.8.2
Write the factored form using these integers.
9a2(3-a)2-1(a((a-6)(a-3))(a-3)(9+3a+a2)+9a2+3a+9)
9a2(3-a)2-1(a(a-6)(a-3)(a-3)(9+3a+a2)+9a2+3a+9)
9a2(3-a)2-1(a(a-6)(a-3)(a-3)(9+3a+a2)+9a2+3a+9)
Step 1.10.2
Cancel the common factor of a-3.
Step 1.10.2.1
Cancel the common factor.
9a2(3-a)2-1(a(a-6)(a-3)(a-3)(9+3a+a2)+9a2+3a+9)
Step 1.10.2.2
Rewrite the expression.
9a2(3-a)2-1(a(a-6)9+3a+a2+9a2+3a+9)
9a2(3-a)2-1(a(a-6)9+3a+a2+9a2+3a+9)
9a2(3-a)2-1(a(a-6)9+3a+a2+9a2+3a+9)
Step 1.11
Reorder terms.
9a2(3-a)2-1(a(a-6)a2+3a+9+9a2+3a+9)
Step 1.12
Combine the numerators over the common denominator.
9a2(3-a)2-1a(a-6)+9a2+3a+9
Step 1.13
Simplify the numerator.
Step 1.13.1
Apply the distributive property.
9a2(3-a)2-1a⋅a+a⋅-6+9a2+3a+9
Step 1.13.2
Multiply a by a.
9a2(3-a)2-1a2+a⋅-6+9a2+3a+9
Step 1.13.3
Move -6 to the left of a.
9a2(3-a)2-1a2-6⋅a+9a2+3a+9
Step 1.13.4
Factor using the perfect square rule.
Step 1.13.4.1
Rewrite 9 as 32.
9a2(3-a)2-1a2-6a+32a2+3a+9
Step 1.13.4.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
6a=2⋅a⋅3
Step 1.13.4.3
Rewrite the polynomial.
9a2(3-a)2-1a2-2⋅a⋅3+32a2+3a+9
Step 1.13.4.4
Factor using the perfect square trinomial rule a2-2ab+b2=(a-b)2, where a=a and b=3.
9a2(3-a)2-1(a-3)2a2+3a+9
9a2(3-a)2-1(a-3)2a2+3a+9
9a2(3-a)2-1(a-3)2a2+3a+9
Step 1.14
Rewrite -1(a-3)2a2+3a+9 as -(a-3)2a2+3a+9.
9a2(3-a)2-(a-3)2a2+3a+9
9a2(3-a)2-(a-3)2a2+3a+9
Step 2
To write 9a2(3-a)2 as a fraction with a common denominator, multiply by a2+3a+9a2+3a+9.
9a2(3-a)2⋅a2+3a+9a2+3a+9-(a-3)2a2+3a+9
Step 3
To write -(a-3)2a2+3a+9 as a fraction with a common denominator, multiply by (3-a)2(3-a)2.
9a2(3-a)2⋅a2+3a+9a2+3a+9-(a-3)2a2+3a+9⋅(3-a)2(3-a)2
Step 4
Step 4.1
Multiply 9a2(3-a)2 by a2+3a+9a2+3a+9.
9a2(a2+3a+9)(3-a)2(a2+3a+9)-(a-3)2a2+3a+9⋅(3-a)2(3-a)2
Step 4.2
Multiply (a-3)2a2+3a+9 by (3-a)2(3-a)2.
9a2(a2+3a+9)(3-a)2(a2+3a+9)-(a-3)2(3-a)2(a2+3a+9)(3-a)2
Step 4.3
Reorder the factors of (a2+3a+9)(3-a)2.
9a2(a2+3a+9)(3-a)2(a2+3a+9)-(a-3)2(3-a)2(3-a)2(a2+3a+9)
9a2(a2+3a+9)(3-a)2(a2+3a+9)-(a-3)2(3-a)2(3-a)2(a2+3a+9)
Step 5
Combine the numerators over the common denominator.
9a2(a2+3a+9)-(a-3)2(3-a)2(3-a)2(a2+3a+9)
Step 6
Step 6.1
Apply the distributive property.
9a2a2+9a2(3a)+9a2⋅9-(a-3)2(3-a)2(3-a)2(a2+3a+9)
Step 6.2
Simplify.
Step 6.2.1
Multiply a2 by a2 by adding the exponents.
Step 6.2.1.1
Move a2.
9(a2a2)+9a2(3a)+9a2⋅9-(a-3)2(3-a)2(3-a)2(a2+3a+9)
Step 6.2.1.2
Use the power rule aman=am+n to combine exponents.
9a2+2+9a2(3a)+9a2⋅9-(a-3)2(3-a)2(3-a)2(a2+3a+9)
Step 6.2.1.3
Add 2 and 2.
9a4+9a2(3a)+9a2⋅9-(a-3)2(3-a)2(3-a)2(a2+3a+9)
9a4+9a2(3a)+9a2⋅9-(a-3)2(3-a)2(3-a)2(a2+3a+9)
Step 6.2.2
Rewrite using the commutative property of multiplication.
9a4+9⋅3a2a+9a2⋅9-(a-3)2(3-a)2(3-a)2(a2+3a+9)
Step 6.2.3
Multiply 9 by 9.
9a4+9⋅3a2a+81a2-(a-3)2(3-a)2(3-a)2(a2+3a+9)
9a4+9⋅3a2a+81a2-(a-3)2(3-a)2(3-a)2(a2+3a+9)
Step 6.3
Simplify each term.
Step 6.3.1
Multiply a2 by a by adding the exponents.
Step 6.3.1.1
Move a.
9a4+9⋅3(a⋅a2)+81a2-(a-3)2(3-a)2(3-a)2(a2+3a+9)
Step 6.3.1.2
Multiply a by a2.
Step 6.3.1.2.1
Raise a to the power of 1.
9a4+9⋅3(a1a2)+81a2-(a-3)2(3-a)2(3-a)2(a2+3a+9)
Step 6.3.1.2.2
Use the power rule aman=am+n to combine exponents.
9a4+9⋅3a1+2+81a2-(a-3)2(3-a)2(3-a)2(a2+3a+9)
9a4+9⋅3a1+2+81a2-(a-3)2(3-a)2(3-a)2(a2+3a+9)
Step 6.3.1.3
Add 1 and 2.
9a4+9⋅3a3+81a2-(a-3)2(3-a)2(3-a)2(a2+3a+9)
9a4+9⋅3a3+81a2-(a-3)2(3-a)2(3-a)2(a2+3a+9)
Step 6.3.2
Multiply 9 by 3.
9a4+27a3+81a2-(a-3)2(3-a)2(3-a)2(a2+3a+9)
9a4+27a3+81a2-(a-3)2(3-a)2(3-a)2(a2+3a+9)
Step 6.4
Rewrite (a-3)2 as (a-3)(a-3).
9a4+27a3+81a2-((a-3)(a-3))(3-a)2(3-a)2(a2+3a+9)
Step 6.5
Expand (a-3)(a-3) using the FOIL Method.
Step 6.5.1
Apply the distributive property.
9a4+27a3+81a2-(a(a-3)-3(a-3))(3-a)2(3-a)2(a2+3a+9)
Step 6.5.2
Apply the distributive property.
9a4+27a3+81a2-(a⋅a+a⋅-3-3(a-3))(3-a)2(3-a)2(a2+3a+9)
Step 6.5.3
Apply the distributive property.
9a4+27a3+81a2-(a⋅a+a⋅-3-3a-3⋅-3)(3-a)2(3-a)2(a2+3a+9)
9a4+27a3+81a2-(a⋅a+a⋅-3-3a-3⋅-3)(3-a)2(3-a)2(a2+3a+9)
Step 6.6
Simplify and combine like terms.
Step 6.6.1
Simplify each term.
Step 6.6.1.1
Multiply a by a.
9a4+27a3+81a2-(a2+a⋅-3-3a-3⋅-3)(3-a)2(3-a)2(a2+3a+9)
Step 6.6.1.2
Move -3 to the left of a.
9a4+27a3+81a2-(a2-3⋅a-3a-3⋅-3)(3-a)2(3-a)2(a2+3a+9)
Step 6.6.1.3
Multiply -3 by -3.
9a4+27a3+81a2-(a2-3a-3a+9)(3-a)2(3-a)2(a2+3a+9)
9a4+27a3+81a2-(a2-3a-3a+9)(3-a)2(3-a)2(a2+3a+9)
Step 6.6.2
Subtract 3a from -3a.
9a4+27a3+81a2-(a2-6a+9)(3-a)2(3-a)2(a2+3a+9)
9a4+27a3+81a2-(a2-6a+9)(3-a)2(3-a)2(a2+3a+9)
Step 6.7
Apply the distributive property.
9a4+27a3+81a2+(-a2-(-6a)-1⋅9)(3-a)2(3-a)2(a2+3a+9)
Step 6.8
Simplify.
Step 6.8.1
Multiply -6 by -1.
9a4+27a3+81a2+(-a2+6a-1⋅9)(3-a)2(3-a)2(a2+3a+9)
Step 6.8.2
Multiply -1 by 9.
9a4+27a3+81a2+(-a2+6a-9)(3-a)2(3-a)2(a2+3a+9)
9a4+27a3+81a2+(-a2+6a-9)(3-a)2(3-a)2(a2+3a+9)
Step 6.9
Rewrite (3-a)2 as (3-a)(3-a).
9a4+27a3+81a2+(-a2+6a-9)((3-a)(3-a))(3-a)2(a2+3a+9)
Step 6.10
Expand (3-a)(3-a) using the FOIL Method.
Step 6.10.1
Apply the distributive property.
9a4+27a3+81a2+(-a2+6a-9)(3(3-a)-a(3-a))(3-a)2(a2+3a+9)
Step 6.10.2
Apply the distributive property.
9a4+27a3+81a2+(-a2+6a-9)(3⋅3+3(-a)-a(3-a))(3-a)2(a2+3a+9)
Step 6.10.3
Apply the distributive property.
9a4+27a3+81a2+(-a2+6a-9)(3⋅3+3(-a)-a⋅3-a(-a))(3-a)2(a2+3a+9)
9a4+27a3+81a2+(-a2+6a-9)(3⋅3+3(-a)-a⋅3-a(-a))(3-a)2(a2+3a+9)
Step 6.11
Simplify and combine like terms.
Step 6.11.1
Simplify each term.
Step 6.11.1.1
Multiply 3 by 3.
9a4+27a3+81a2+(-a2+6a-9)(9+3(-a)-a⋅3-a(-a))(3-a)2(a2+3a+9)
Step 6.11.1.2
Multiply -1 by 3.
9a4+27a3+81a2+(-a2+6a-9)(9-3a-a⋅3-a(-a))(3-a)2(a2+3a+9)
Step 6.11.1.3
Multiply 3 by -1.
9a4+27a3+81a2+(-a2+6a-9)(9-3a-3a-a(-a))(3-a)2(a2+3a+9)
Step 6.11.1.4
Rewrite using the commutative property of multiplication.
9a4+27a3+81a2+(-a2+6a-9)(9-3a-3a-1⋅-1a⋅a)(3-a)2(a2+3a+9)
Step 6.11.1.5
Multiply a by a by adding the exponents.
Step 6.11.1.5.1
Move a.
9a4+27a3+81a2+(-a2+6a-9)(9-3a-3a-1⋅-1(a⋅a))(3-a)2(a2+3a+9)
Step 6.11.1.5.2
Multiply a by a.
9a4+27a3+81a2+(-a2+6a-9)(9-3a-3a-1⋅-1a2)(3-a)2(a2+3a+9)
9a4+27a3+81a2+(-a2+6a-9)(9-3a-3a-1⋅-1a2)(3-a)2(a2+3a+9)
Step 6.11.1.6
Multiply -1 by -1.
9a4+27a3+81a2+(-a2+6a-9)(9-3a-3a+1a2)(3-a)2(a2+3a+9)
Step 6.11.1.7
Multiply a2 by 1.
9a4+27a3+81a2+(-a2+6a-9)(9-3a-3a+a2)(3-a)2(a2+3a+9)
9a4+27a3+81a2+(-a2+6a-9)(9-3a-3a+a2)(3-a)2(a2+3a+9)
Step 6.11.2
Subtract 3a from -3a.
9a4+27a3+81a2+(-a2+6a-9)(9-6a+a2)(3-a)2(a2+3a+9)
9a4+27a3+81a2+(-a2+6a-9)(9-6a+a2)(3-a)2(a2+3a+9)
Step 6.12
Expand (-a2+6a-9)(9-6a+a2) by multiplying each term in the first expression by each term in the second expression.
9a4+27a3+81a2-a2⋅9-a2(-6a)-a2a2+6a⋅9+6a(-6a)+6a⋅a2-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
Step 6.13
Simplify each term.
Step 6.13.1
Multiply 9 by -1.
9a4+27a3+81a2-9a2-a2(-6a)-a2a2+6a⋅9+6a(-6a)+6a⋅a2-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
Step 6.13.2
Rewrite using the commutative property of multiplication.
9a4+27a3+81a2-9a2-1⋅-6a2a-a2a2+6a⋅9+6a(-6a)+6a⋅a2-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
Step 6.13.3
Multiply a2 by a by adding the exponents.
Step 6.13.3.1
Move a.
9a4+27a3+81a2-9a2-1⋅-6(a⋅a2)-a2a2+6a⋅9+6a(-6a)+6a⋅a2-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
Step 6.13.3.2
Multiply a by a2.
Step 6.13.3.2.1
Raise a to the power of 1.
9a4+27a3+81a2-9a2-1⋅-6(a1a2)-a2a2+6a⋅9+6a(-6a)+6a⋅a2-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
Step 6.13.3.2.2
Use the power rule aman=am+n to combine exponents.
9a4+27a3+81a2-9a2-1⋅-6a1+2-a2a2+6a⋅9+6a(-6a)+6a⋅a2-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
9a4+27a3+81a2-9a2-1⋅-6a1+2-a2a2+6a⋅9+6a(-6a)+6a⋅a2-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
Step 6.13.3.3
Add 1 and 2.
9a4+27a3+81a2-9a2-1⋅-6a3-a2a2+6a⋅9+6a(-6a)+6a⋅a2-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
9a4+27a3+81a2-9a2-1⋅-6a3-a2a2+6a⋅9+6a(-6a)+6a⋅a2-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
Step 6.13.4
Multiply -1 by -6.
9a4+27a3+81a2-9a2+6a3-a2a2+6a⋅9+6a(-6a)+6a⋅a2-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
Step 6.13.5
Multiply a2 by a2 by adding the exponents.
Step 6.13.5.1
Move a2.
9a4+27a3+81a2-9a2+6a3-(a2a2)+6a⋅9+6a(-6a)+6a⋅a2-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
Step 6.13.5.2
Use the power rule aman=am+n to combine exponents.
9a4+27a3+81a2-9a2+6a3-a2+2+6a⋅9+6a(-6a)+6a⋅a2-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
Step 6.13.5.3
Add 2 and 2.
9a4+27a3+81a2-9a2+6a3-a4+6a⋅9+6a(-6a)+6a⋅a2-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
9a4+27a3+81a2-9a2+6a3-a4+6a⋅9+6a(-6a)+6a⋅a2-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
Step 6.13.6
Multiply 9 by 6.
9a4+27a3+81a2-9a2+6a3-a4+54a+6a(-6a)+6a⋅a2-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
Step 6.13.7
Rewrite using the commutative property of multiplication.
9a4+27a3+81a2-9a2+6a3-a4+54a+6⋅-6a⋅a+6a⋅a2-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
Step 6.13.8
Multiply a by a by adding the exponents.
Step 6.13.8.1
Move a.
9a4+27a3+81a2-9a2+6a3-a4+54a+6⋅-6(a⋅a)+6a⋅a2-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
Step 6.13.8.2
Multiply a by a.
9a4+27a3+81a2-9a2+6a3-a4+54a+6⋅-6a2+6a⋅a2-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
9a4+27a3+81a2-9a2+6a3-a4+54a+6⋅-6a2+6a⋅a2-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
Step 6.13.9
Multiply 6 by -6.
9a4+27a3+81a2-9a2+6a3-a4+54a-36a2+6a⋅a2-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
Step 6.13.10
Multiply a by a2 by adding the exponents.
Step 6.13.10.1
Move a2.
9a4+27a3+81a2-9a2+6a3-a4+54a-36a2+6(a2a)-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
Step 6.13.10.2
Multiply a2 by a.
Step 6.13.10.2.1
Raise a to the power of 1.
9a4+27a3+81a2-9a2+6a3-a4+54a-36a2+6(a2a1)-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
Step 6.13.10.2.2
Use the power rule aman=am+n to combine exponents.
9a4+27a3+81a2-9a2+6a3-a4+54a-36a2+6a2+1-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
9a4+27a3+81a2-9a2+6a3-a4+54a-36a2+6a2+1-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
Step 6.13.10.3
Add 2 and 1.
9a4+27a3+81a2-9a2+6a3-a4+54a-36a2+6a3-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
9a4+27a3+81a2-9a2+6a3-a4+54a-36a2+6a3-9⋅9-9(-6a)-9a2(3-a)2(a2+3a+9)
Step 6.13.11
Multiply -9 by 9.
9a4+27a3+81a2-9a2+6a3-a4+54a-36a2+6a3-81-9(-6a)-9a2(3-a)2(a2+3a+9)
Step 6.13.12
Multiply -6 by -9.
9a4+27a3+81a2-9a2+6a3-a4+54a-36a2+6a3-81+54a-9a2(3-a)2(a2+3a+9)
9a4+27a3+81a2-9a2+6a3-a4+54a-36a2+6a3-81+54a-9a2(3-a)2(a2+3a+9)
Step 6.14
Subtract 36a2 from -9a2.
9a4+27a3+81a2+6a3-a4+54a-45a2+6a3-81+54a-9a2(3-a)2(a2+3a+9)
Step 6.15
Add 6a3 and 6a3.
9a4+27a3+81a2+12a3-a4+54a-45a2-81+54a-9a2(3-a)2(a2+3a+9)
Step 6.16
Add 54a and 54a.
9a4+27a3+81a2+12a3-a4+108a-45a2-81-9a2(3-a)2(a2+3a+9)
Step 6.17
Subtract 9a2 from -45a2.
9a4+27a3+81a2+12a3-a4+108a-54a2-81(3-a)2(a2+3a+9)
Step 6.18
Subtract a4 from 9a4.
8a4+27a3+81a2+12a3+108a-54a2-81(3-a)2(a2+3a+9)
Step 6.19
Add 27a3 and 12a3.
8a4+39a3+81a2+108a-54a2-81(3-a)2(a2+3a+9)
Step 6.20
Subtract 54a2 from 81a2.
8a4+39a3+27a2+108a-81(3-a)2(a2+3a+9)
8a4+39a3+27a2+108a-81(3-a)2(a2+3a+9)