Finite Math Examples

Simplify 6/(50+23x^2-x^4)-3/(x^3-5x^2+2x-10)
650+23x2-x4-3x3-5x2+2x-10650+23x2x43x35x2+2x10
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Simplify the denominator.
Tap for more steps...
Step 1.1.1
Factor by grouping.
Tap for more steps...
Step 1.1.1.1
Reorder terms.
6-x4+23x2+50-3x3-5x2+2x-106x4+23x2+503x35x2+2x10
Step 1.1.1.2
For a polynomial of the form ax2+bx+cax2+bx+c, rewrite the middle term as a sum of two terms whose product is ac=-150=-50ac=150=50 and whose sum is b=23b=23.
Tap for more steps...
Step 1.1.1.2.1
Factor 2323 out of 23x223x2.
6-x4+23(x2)+50-3x3-5x2+2x-106x4+23(x2)+503x35x2+2x10
Step 1.1.1.2.2
Rewrite 2323 as -22 plus 2525
6-x4+(-2+25)x2+50-3x3-5x2+2x-106x4+(2+25)x2+503x35x2+2x10
Step 1.1.1.2.3
Apply the distributive property.
6-x4-2x2+25x2+50-3x3-5x2+2x-106x42x2+25x2+503x35x2+2x10
6-x4-2x2+25x2+50-3x3-5x2+2x-106x42x2+25x2+503x35x2+2x10
Step 1.1.1.3
Factor out the greatest common factor from each group.
Tap for more steps...
Step 1.1.1.3.1
Group the first two terms and the last two terms.
6(-x4-2x2)+25x2+50-3x3-5x2+2x-106(x42x2)+25x2+503x35x2+2x10
Step 1.1.1.3.2
Factor out the greatest common factor (GCF) from each group.
6x2(-x2-2)-25(-x2-2)-3x3-5x2+2x-106x2(x22)25(x22)3x35x2+2x10
6x2(-x2-2)-25(-x2-2)-3x3-5x2+2x-106x2(x22)25(x22)3x35x2+2x10
Step 1.1.1.4
Factor the polynomial by factoring out the greatest common factor, -x2-2x22.
6(-x2-2)(x2-25)-3x3-5x2+2x-106(x22)(x225)3x35x2+2x10
6(-x2-2)(x2-25)-3x3-5x2+2x-106(x22)(x225)3x35x2+2x10
Step 1.1.2
Rewrite 2525 as 5252.
6(-x2-2)(x2-52)-3x3-5x2+2x-106(x22)(x252)3x35x2+2x10
Step 1.1.3
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=xa=x and b=5b=5.
6(-x2-2)(x+5)(x-5)-3x3-5x2+2x-106(x22)(x+5)(x5)3x35x2+2x10
6(-x2-2)(x+5)(x-5)-3x3-5x2+2x-106(x22)(x+5)(x5)3x35x2+2x10
Step 1.2
Simplify the denominator.
Tap for more steps...
Step 1.2.1
Factor out the greatest common factor from each group.
Tap for more steps...
Step 1.2.1.1
Group the first two terms and the last two terms.
6(-x2-2)(x+5)(x-5)-3(x3-5x2)+2x-106(x22)(x+5)(x5)3(x35x2)+2x10
Step 1.2.1.2
Factor out the greatest common factor (GCF) from each group.
6(-x2-2)(x+5)(x-5)-3x2(x-5)+2(x-5)6(x22)(x+5)(x5)3x2(x5)+2(x5)
6(-x2-2)(x+5)(x-5)-3x2(x-5)+2(x-5)6(x22)(x+5)(x5)3x2(x5)+2(x5)
Step 1.2.2
Factor the polynomial by factoring out the greatest common factor, x-5x5.
6(-x2-2)(x+5)(x-5)-3(x-5)(x2+2)6(x22)(x+5)(x5)3(x5)(x2+2)
6(-x2-2)(x+5)(x-5)-3(x-5)(x2+2)6(x22)(x+5)(x5)3(x5)(x2+2)
6(-x2-2)(x+5)(x-5)-3(x-5)(x2+2)6(x22)(x+5)(x5)3(x5)(x2+2)
Step 2
Simplify with factoring out.
Tap for more steps...
Step 2.1
Factor -11 out of x2x2.
6(-x2-2)(x+5)(x-5)-3(x-5)(-1(-x2)+2)6(x22)(x+5)(x5)3(x5)(1(x2)+2)
Step 2.2
Rewrite 22 as -1(-2)1(2).
6(-x2-2)(x+5)(x-5)-3(x-5)(-1(-x2)-1(-2))6(x22)(x+5)(x5)3(x5)(1(x2)1(2))
Step 2.3
Factor -11 out of -1(-x2)-1(-2)1(x2)1(2).
6(-x2-2)(x+5)(x-5)-3(x-5)(-1(-x2-2))6(x22)(x+5)(x5)3(x5)(1(x22))
6(-x2-2)(x+5)(x-5)-3(x-5)(-1(-x2-2))6(x22)(x+5)(x5)3(x5)(1(x22))
Step 3
To write 6(-x2-2)(x+5)(x-5)6(x22)(x+5)(x5) as a fraction with a common denominator, multiply by -1-111.
6(-x2-2)(x+5)(x-5)-1-1-3(x-5)(-1(-x2-2))6(x22)(x+5)(x5)113(x5)(1(x22))
Step 4
To write -3(x-5)(-1(-x2-2))3(x5)(1(x22)) as a fraction with a common denominator, multiply by x+5x+5x+5x+5.
6(-x2-2)(x+5)(x-5)-1-1-3(x-5)(-1(-x2-2))x+5x+56(x22)(x+5)(x5)113(x5)(1(x22))x+5x+5
Step 5
Write each expression with a common denominator of (-x2-2)(x+5)(x-5)-1(x22)(x+5)(x5)1, by multiplying each by an appropriate factor of 11.
Tap for more steps...
Step 5.1
Multiply 6(-x2-2)(x+5)(x-5)6(x22)(x+5)(x5) by -1-111.
6-1(-x2-2)(x+5)(x-5)-1-3(x-5)(-1(-x2-2))x+5x+561(x22)(x+5)(x5)13(x5)(1(x22))x+5x+5
Step 5.2
Multiply 3(x-5)(-1(-x2-2))3(x5)(1(x22)) by x+5x+5x+5x+5.
6-1(-x2-2)(x+5)(x-5)-1-3(x+5)(x-5)(-1(-x2-2))(x+5)61(x22)(x+5)(x5)13(x+5)(x5)(1(x22))(x+5)
Step 5.3
Reorder the factors of (-x2-2)(x+5)(x-5)-1(x22)(x+5)(x5)1.
6-1-(-x2-2)(x+5)(x-5)-3(x+5)(x-5)(-1(-x2-2))(x+5)61(x22)(x+5)(x5)3(x+5)(x5)(1(x22))(x+5)
Step 5.4
Reorder the factors of (x-5)(-1(-x2-2))(x+5)(x5)(1(x22))(x+5).
6-1-(-x2-2)(x+5)(x-5)-3(x+5)-(-x2-2)(x+5)(x-5)61(x22)(x+5)(x5)3(x+5)(x22)(x+5)(x5)
6-1-(-x2-2)(x+5)(x-5)-3(x+5)-(-x2-2)(x+5)(x-5)61(x22)(x+5)(x5)3(x+5)(x22)(x+5)(x5)
Step 6
Combine the numerators over the common denominator.
6-1-3(x+5)-(-x2-2)(x+5)(x-5)613(x+5)(x22)(x+5)(x5)
Step 7
Simplify the numerator.
Tap for more steps...
Step 7.1
Factor -33 out of 6-1-3(x+5)613(x+5).
Tap for more steps...
Step 7.1.1
Reorder 6-161 and -3(x+5)3(x+5).
-3(x+5)+6-1-(-x2-2)(x+5)(x-5)3(x+5)+61(x22)(x+5)(x5)
Step 7.1.2
Factor -33 out of 6-161.
-3(x+5)-3(-2-1)-(-x2-2)(x+5)(x-5)3(x+5)3(21)(x22)(x+5)(x5)
Step 7.1.3
Factor -33 out of -3(x+5)-3(-2-1)3(x+5)3(21).
-3(x+5-2-1)-(-x2-2)(x+5)(x-5)3(x+521)(x22)(x+5)(x5)
-3(x+5-2-1)-(-x2-2)(x+5)(x-5)3(x+521)(x22)(x+5)(x5)
Step 7.2
Multiply -22 by -11.
-3(x+5+2)-(-x2-2)(x+5)(x-5)3(x+5+2)(x22)(x+5)(x5)
Step 7.3
Add 55 and 22.
-3(x+7)-(-x2-2)(x+5)(x-5)3(x+7)(x22)(x+5)(x5)
-3(x+7)-(-x2-2)(x+5)(x-5)3(x+7)(x22)(x+5)(x5)
Step 8
Simplify terms.
Tap for more steps...
Step 8.1
Dividing two negative values results in a positive value.
3(x+7)((-x2-2)(x+5))(x-5)3(x+7)((x22)(x+5))(x5)
Step 8.2
Factor -11 out of -x2x2.
3(x+7)(-(x2)-2)(x+5)(x-5)3(x+7)((x2)2)(x+5)(x5)
Step 8.3
Rewrite -22 as -1(2)1(2).
3(x+7)(-(x2)-1(2))(x+5)(x-5)3(x+7)((x2)1(2))(x+5)(x5)
Step 8.4
Factor -11 out of -(x2)-1(2)(x2)1(2).
3(x+7)-(x2+2)(x+5)(x-5)3(x+7)(x2+2)(x+5)(x5)
Step 8.5
Rewrite negatives.
Tap for more steps...
Step 8.5.1
Rewrite -(x2+2)(x2+2) as -1(x2+2)1(x2+2).
3(x+7)-1(x2+2)(x+5)(x-5)3(x+7)1(x2+2)(x+5)(x5)
Step 8.5.2
Move the negative in front of the fraction.
-3(x+7)((x2+2)(x+5))(x-5)3(x+7)((x2+2)(x+5))(x5)
-3(x+7)((x2+2)(x+5))(x-5)3(x+7)((x2+2)(x+5))(x5)
-3(x+7)((x2+2)(x+5))(x-5)3(x+7)((x2+2)(x+5))(x5)
 [x2  12  π  xdx ]  x2  12  π  xdx