Enter a problem...
Finite Math Examples
650+23x2-x4-3x3-5x2+2x-10650+23x2−x4−3x3−5x2+2x−10
Step 1
Step 1.1
Simplify the denominator.
Step 1.1.1
Factor by grouping.
Step 1.1.1.1
Reorder terms.
6-x4+23x2+50-3x3-5x2+2x-106−x4+23x2+50−3x3−5x2+2x−10
Step 1.1.1.2
For a polynomial of the form ax2+bx+cax2+bx+c, rewrite the middle term as a sum of two terms whose product is a⋅c=-1⋅50=-50a⋅c=−1⋅50=−50 and whose sum is b=23b=23.
Step 1.1.1.2.1
Factor 2323 out of 23x223x2.
6-x4+23(x2)+50-3x3-5x2+2x-106−x4+23(x2)+50−3x3−5x2+2x−10
Step 1.1.1.2.2
Rewrite 2323 as -2−2 plus 2525
6-x4+(-2+25)x2+50-3x3-5x2+2x-106−x4+(−2+25)x2+50−3x3−5x2+2x−10
Step 1.1.1.2.3
Apply the distributive property.
6-x4-2x2+25x2+50-3x3-5x2+2x-106−x4−2x2+25x2+50−3x3−5x2+2x−10
6-x4-2x2+25x2+50-3x3-5x2+2x-106−x4−2x2+25x2+50−3x3−5x2+2x−10
Step 1.1.1.3
Factor out the greatest common factor from each group.
Step 1.1.1.3.1
Group the first two terms and the last two terms.
6(-x4-2x2)+25x2+50-3x3-5x2+2x-106(−x4−2x2)+25x2+50−3x3−5x2+2x−10
Step 1.1.1.3.2
Factor out the greatest common factor (GCF) from each group.
6x2(-x2-2)-25(-x2-2)-3x3-5x2+2x-106x2(−x2−2)−25(−x2−2)−3x3−5x2+2x−10
6x2(-x2-2)-25(-x2-2)-3x3-5x2+2x-106x2(−x2−2)−25(−x2−2)−3x3−5x2+2x−10
Step 1.1.1.4
Factor the polynomial by factoring out the greatest common factor, -x2-2−x2−2.
6(-x2-2)(x2-25)-3x3-5x2+2x-106(−x2−2)(x2−25)−3x3−5x2+2x−10
6(-x2-2)(x2-25)-3x3-5x2+2x-106(−x2−2)(x2−25)−3x3−5x2+2x−10
Step 1.1.2
Rewrite 2525 as 5252.
6(-x2-2)(x2-52)-3x3-5x2+2x-106(−x2−2)(x2−52)−3x3−5x2+2x−10
Step 1.1.3
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=xa=x and b=5b=5.
6(-x2-2)(x+5)(x-5)-3x3-5x2+2x-106(−x2−2)(x+5)(x−5)−3x3−5x2+2x−10
6(-x2-2)(x+5)(x-5)-3x3-5x2+2x-106(−x2−2)(x+5)(x−5)−3x3−5x2+2x−10
Step 1.2
Simplify the denominator.
Step 1.2.1
Factor out the greatest common factor from each group.
Step 1.2.1.1
Group the first two terms and the last two terms.
6(-x2-2)(x+5)(x-5)-3(x3-5x2)+2x-106(−x2−2)(x+5)(x−5)−3(x3−5x2)+2x−10
Step 1.2.1.2
Factor out the greatest common factor (GCF) from each group.
6(-x2-2)(x+5)(x-5)-3x2(x-5)+2(x-5)6(−x2−2)(x+5)(x−5)−3x2(x−5)+2(x−5)
6(-x2-2)(x+5)(x-5)-3x2(x-5)+2(x-5)6(−x2−2)(x+5)(x−5)−3x2(x−5)+2(x−5)
Step 1.2.2
Factor the polynomial by factoring out the greatest common factor, x-5x−5.
6(-x2-2)(x+5)(x-5)-3(x-5)(x2+2)6(−x2−2)(x+5)(x−5)−3(x−5)(x2+2)
6(-x2-2)(x+5)(x-5)-3(x-5)(x2+2)6(−x2−2)(x+5)(x−5)−3(x−5)(x2+2)
6(-x2-2)(x+5)(x-5)-3(x-5)(x2+2)6(−x2−2)(x+5)(x−5)−3(x−5)(x2+2)
Step 2
Step 2.1
Factor -1−1 out of x2x2.
6(-x2-2)(x+5)(x-5)-3(x-5)(-1(-x2)+2)6(−x2−2)(x+5)(x−5)−3(x−5)(−1(−x2)+2)
Step 2.2
Rewrite 22 as -1(-2)−1(−2).
6(-x2-2)(x+5)(x-5)-3(x-5)(-1(-x2)-1(-2))6(−x2−2)(x+5)(x−5)−3(x−5)(−1(−x2)−1(−2))
Step 2.3
Factor -1−1 out of -1(-x2)-1(-2)−1(−x2)−1(−2).
6(-x2-2)(x+5)(x-5)-3(x-5)(-1(-x2-2))6(−x2−2)(x+5)(x−5)−3(x−5)(−1(−x2−2))
6(-x2-2)(x+5)(x-5)-3(x-5)(-1(-x2-2))6(−x2−2)(x+5)(x−5)−3(x−5)(−1(−x2−2))
Step 3
To write 6(-x2-2)(x+5)(x-5)6(−x2−2)(x+5)(x−5) as a fraction with a common denominator, multiply by -1-1−1−1.
6(-x2-2)(x+5)(x-5)⋅-1-1-3(x-5)(-1(-x2-2))6(−x2−2)(x+5)(x−5)⋅−1−1−3(x−5)(−1(−x2−2))
Step 4
To write -3(x-5)(-1(-x2-2))−3(x−5)(−1(−x2−2)) as a fraction with a common denominator, multiply by x+5x+5x+5x+5.
6(-x2-2)(x+5)(x-5)⋅-1-1-3(x-5)(-1(-x2-2))⋅x+5x+56(−x2−2)(x+5)(x−5)⋅−1−1−3(x−5)(−1(−x2−2))⋅x+5x+5
Step 5
Step 5.1
Multiply 6(-x2-2)(x+5)(x-5)6(−x2−2)(x+5)(x−5) by -1-1−1−1.
6⋅-1(-x2-2)(x+5)(x-5)⋅-1-3(x-5)(-1(-x2-2))⋅x+5x+56⋅−1(−x2−2)(x+5)(x−5)⋅−1−3(x−5)(−1(−x2−2))⋅x+5x+5
Step 5.2
Multiply 3(x-5)(-1(-x2-2))3(x−5)(−1(−x2−2)) by x+5x+5x+5x+5.
6⋅-1(-x2-2)(x+5)(x-5)⋅-1-3(x+5)(x-5)(-1(-x2-2))(x+5)6⋅−1(−x2−2)(x+5)(x−5)⋅−1−3(x+5)(x−5)(−1(−x2−2))(x+5)
Step 5.3
Reorder the factors of (-x2-2)(x+5)(x-5)⋅-1(−x2−2)(x+5)(x−5)⋅−1.
6⋅-1-(-x2-2)(x+5)(x-5)-3(x+5)(x-5)(-1(-x2-2))(x+5)6⋅−1−(−x2−2)(x+5)(x−5)−3(x+5)(x−5)(−1(−x2−2))(x+5)
Step 5.4
Reorder the factors of (x-5)(-1(-x2-2))(x+5)(x−5)(−1(−x2−2))(x+5).
6⋅-1-(-x2-2)(x+5)(x-5)-3(x+5)-(-x2-2)(x+5)(x-5)6⋅−1−(−x2−2)(x+5)(x−5)−3(x+5)−(−x2−2)(x+5)(x−5)
6⋅-1-(-x2-2)(x+5)(x-5)-3(x+5)-(-x2-2)(x+5)(x-5)6⋅−1−(−x2−2)(x+5)(x−5)−3(x+5)−(−x2−2)(x+5)(x−5)
Step 6
Combine the numerators over the common denominator.
6⋅-1-3(x+5)-(-x2-2)(x+5)(x-5)6⋅−1−3(x+5)−(−x2−2)(x+5)(x−5)
Step 7
Step 7.1
Factor -3−3 out of 6⋅-1-3(x+5)6⋅−1−3(x+5).
Step 7.1.1
Reorder 6⋅-16⋅−1 and -3(x+5)−3(x+5).
-3(x+5)+6⋅-1-(-x2-2)(x+5)(x-5)−3(x+5)+6⋅−1−(−x2−2)(x+5)(x−5)
Step 7.1.2
Factor -3−3 out of 6⋅-16⋅−1.
-3(x+5)-3(-2⋅-1)-(-x2-2)(x+5)(x-5)−3(x+5)−3(−2⋅−1)−(−x2−2)(x+5)(x−5)
Step 7.1.3
Factor -3−3 out of -3(x+5)-3(-2⋅-1)−3(x+5)−3(−2⋅−1).
-3(x+5-2⋅-1)-(-x2-2)(x+5)(x-5)−3(x+5−2⋅−1)−(−x2−2)(x+5)(x−5)
-3(x+5-2⋅-1)-(-x2-2)(x+5)(x-5)−3(x+5−2⋅−1)−(−x2−2)(x+5)(x−5)
Step 7.2
Multiply -2−2 by -1−1.
-3(x+5+2)-(-x2-2)(x+5)(x-5)−3(x+5+2)−(−x2−2)(x+5)(x−5)
Step 7.3
Add 55 and 22.
-3(x+7)-(-x2-2)(x+5)(x-5)−3(x+7)−(−x2−2)(x+5)(x−5)
-3(x+7)-(-x2-2)(x+5)(x-5)−3(x+7)−(−x2−2)(x+5)(x−5)
Step 8
Step 8.1
Dividing two negative values results in a positive value.
3(x+7)((-x2-2)(x+5))(x-5)3(x+7)((−x2−2)(x+5))(x−5)
Step 8.2
Factor -1−1 out of -x2−x2.
3(x+7)(-(x2)-2)(x+5)(x-5)3(x+7)(−(x2)−2)(x+5)(x−5)
Step 8.3
Rewrite -2−2 as -1(2)−1(2).
3(x+7)(-(x2)-1(2))(x+5)(x-5)3(x+7)(−(x2)−1(2))(x+5)(x−5)
Step 8.4
Factor -1−1 out of -(x2)-1(2)−(x2)−1(2).
3(x+7)-(x2+2)(x+5)(x-5)3(x+7)−(x2+2)(x+5)(x−5)
Step 8.5
Rewrite negatives.
Step 8.5.1
Rewrite -(x2+2)−(x2+2) as -1(x2+2)−1(x2+2).
3(x+7)-1(x2+2)(x+5)(x-5)3(x+7)−1(x2+2)(x+5)(x−5)
Step 8.5.2
Move the negative in front of the fraction.
-3(x+7)((x2+2)(x+5))(x-5)−3(x+7)((x2+2)(x+5))(x−5)
-3(x+7)((x2+2)(x+5))(x-5)−3(x+7)((x2+2)(x+5))(x−5)
-3(x+7)((x2+2)(x+5))(x-5)−3(x+7)((x2+2)(x+5))(x−5)