Enter a problem...
Finite Math Examples
log(x-2)-log(2x+1)=log(1x)
Step 1
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
log(x-22x+1)=log(1x)
Step 2
For the equation to be equal, the argument of the logarithms on both sides of the equation must be equal.
x-22x+1=1x
Step 3
Step 3.1
Multiply the numerator of the first fraction by the denominator of the second fraction. Set this equal to the product of the denominator of the first fraction and the numerator of the second fraction.
(x-2)x=(2x+1)⋅1
Step 3.2
Solve the equation for x.
Step 3.2.1
Simplify (x-2)x.
Step 3.2.1.1
Rewrite.
0+0+(x-2)x=(2x+1)⋅1
Step 3.2.1.2
Simplify by adding zeros.
(x-2)x=(2x+1)⋅1
Step 3.2.1.3
Apply the distributive property.
x⋅x-2x=(2x+1)⋅1
Step 3.2.1.4
Multiply x by x.
x2-2x=(2x+1)⋅1
x2-2x=(2x+1)⋅1
Step 3.2.2
Multiply 2x+1 by 1.
x2-2x=2x+1
Step 3.2.3
Move all terms containing x to the left side of the equation.
Step 3.2.3.1
Subtract 2x from both sides of the equation.
x2-2x-2x=1
Step 3.2.3.2
Subtract 2x from -2x.
x2-4x=1
x2-4x=1
Step 3.2.4
Subtract 1 from both sides of the equation.
x2-4x-1=0
Step 3.2.5
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 3.2.6
Substitute the values a=1, b=-4, and c=-1 into the quadratic formula and solve for x.
4±√(-4)2-4⋅(1⋅-1)2⋅1
Step 3.2.7
Simplify.
Step 3.2.7.1
Simplify the numerator.
Step 3.2.7.1.1
Raise -4 to the power of 2.
x=4±√16-4⋅1⋅-12⋅1
Step 3.2.7.1.2
Multiply -4⋅1⋅-1.
Step 3.2.7.1.2.1
Multiply -4 by 1.
x=4±√16-4⋅-12⋅1
Step 3.2.7.1.2.2
Multiply -4 by -1.
x=4±√16+42⋅1
x=4±√16+42⋅1
Step 3.2.7.1.3
Add 16 and 4.
x=4±√202⋅1
Step 3.2.7.1.4
Rewrite 20 as 22⋅5.
Step 3.2.7.1.4.1
Factor 4 out of 20.
x=4±√4(5)2⋅1
Step 3.2.7.1.4.2
Rewrite 4 as 22.
x=4±√22⋅52⋅1
x=4±√22⋅52⋅1
Step 3.2.7.1.5
Pull terms out from under the radical.
x=4±2√52⋅1
x=4±2√52⋅1
Step 3.2.7.2
Multiply 2 by 1.
x=4±2√52
Step 3.2.7.3
Simplify 4±2√52.
x=2±√5
x=2±√5
Step 3.2.8
The final answer is the combination of both solutions.
x=2+√5,2-√5
x=2+√5,2-√5
x=2+√5,2-√5
Step 4
Exclude the solutions that do not make log(x-2)-log(2x+1)=log(1x) true.
x=2+√5
Step 5
The result can be shown in multiple forms.
Exact Form:
x=2+√5
Decimal Form:
x=4.23606797…