Enter a problem...
Finite Math Examples
Step 1
Step 1.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 1.2
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 1.3
The number is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 1.4
The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either number.
Step 1.5
The factor for is itself.
occurs time.
Step 1.6
The factor for is itself.
occurs time.
Step 1.7
The LCM of is the result of multiplying all factors the greatest number of times they occur in either term.
Step 2
Step 2.1
Multiply each term in by .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Cancel the common factor of .
Step 2.2.1.1.1
Cancel the common factor.
Step 2.2.1.1.2
Rewrite the expression.
Step 2.2.1.2
Apply the distributive property.
Step 2.2.1.3
Rewrite using the commutative property of multiplication.
Step 2.2.1.4
Multiply by by adding the exponents.
Step 2.2.1.4.1
Move .
Step 2.2.1.4.2
Multiply by .
Step 2.2.1.5
Cancel the common factor of .
Step 2.2.1.5.1
Factor out of .
Step 2.2.1.5.2
Cancel the common factor.
Step 2.2.1.5.3
Rewrite the expression.
Step 2.2.1.6
Apply the distributive property.
Step 2.2.1.7
Rewrite using the commutative property of multiplication.
Step 2.2.1.8
Multiply by by adding the exponents.
Step 2.2.1.8.1
Move .
Step 2.2.1.8.2
Multiply by .
Step 2.2.1.9
Expand using the FOIL Method.
Step 2.2.1.9.1
Apply the distributive property.
Step 2.2.1.9.2
Apply the distributive property.
Step 2.2.1.9.3
Apply the distributive property.
Step 2.2.1.10
Simplify each term.
Step 2.2.1.10.1
Multiply by .
Step 2.2.1.10.2
Rewrite using the commutative property of multiplication.
Step 2.2.1.10.3
Rewrite using the commutative property of multiplication.
Step 2.2.1.10.4
Multiply by .
Step 2.2.1.10.5
Multiply by .
Step 2.2.1.11
Apply the distributive property.
Step 2.2.1.12
Simplify.
Step 2.2.1.12.1
Multiply by .
Step 2.2.1.12.2
Multiply by .
Step 2.2.1.13
Remove parentheses.
Step 2.2.2
Add and .
Step 2.2.2.1
Move .
Step 2.2.2.2
Add and .
Step 2.2.3
Add and .
Step 2.3
Simplify the right side.
Step 2.3.1
Expand using the FOIL Method.
Step 2.3.1.1
Apply the distributive property.
Step 2.3.1.2
Apply the distributive property.
Step 2.3.1.3
Apply the distributive property.
Step 2.3.2
Simplify terms.
Step 2.3.2.1
Simplify each term.
Step 2.3.2.1.1
Multiply by .
Step 2.3.2.1.2
Rewrite using the commutative property of multiplication.
Step 2.3.2.1.3
Rewrite using the commutative property of multiplication.
Step 2.3.2.1.4
Multiply by .
Step 2.3.2.1.5
Multiply by .
Step 2.3.2.2
Multiply by .
Step 3
Step 3.1
Use the quadratic formula to find the solutions.
Step 3.2
Substitute the values , , and into the quadratic formula and solve for .
Step 3.3
Simplify.
Step 3.3.1
Simplify the numerator.
Step 3.3.1.1
Apply the distributive property.
Step 3.3.1.2
Multiply by .
Step 3.3.1.3
Multiply by .
Step 3.3.1.4
Rewrite as .
Step 3.3.1.5
Expand using the FOIL Method.
Step 3.3.1.5.1
Apply the distributive property.
Step 3.3.1.5.2
Apply the distributive property.
Step 3.3.1.5.3
Apply the distributive property.
Step 3.3.1.6
Simplify and combine like terms.
Step 3.3.1.6.1
Simplify each term.
Step 3.3.1.6.1.1
Rewrite using the commutative property of multiplication.
Step 3.3.1.6.1.2
Multiply by by adding the exponents.
Step 3.3.1.6.1.2.1
Move .
Step 3.3.1.6.1.2.2
Multiply by .
Step 3.3.1.6.1.3
Multiply by .
Step 3.3.1.6.1.4
Rewrite using the commutative property of multiplication.
Step 3.3.1.6.1.5
Multiply by .
Step 3.3.1.6.1.6
Rewrite using the commutative property of multiplication.
Step 3.3.1.6.1.7
Multiply by .
Step 3.3.1.6.1.8
Rewrite using the commutative property of multiplication.
Step 3.3.1.6.1.9
Multiply by by adding the exponents.
Step 3.3.1.6.1.9.1
Move .
Step 3.3.1.6.1.9.2
Multiply by .
Step 3.3.1.6.1.10
Multiply by .
Step 3.3.1.6.2
Add and .
Step 3.3.1.6.2.1
Move .
Step 3.3.1.6.2.2
Add and .
Step 3.3.1.7
Multiply by .
Step 3.3.1.8
Apply the distributive property.
Step 3.3.1.9
Simplify.
Step 3.3.1.9.1
Multiply by .
Step 3.3.1.9.2
Multiply by .
Step 3.3.1.9.3
Multiply by .
Step 3.3.1.10
Subtract from .
Step 3.3.1.11
Subtract from .
Step 3.3.1.11.1
Move .
Step 3.3.1.11.2
Subtract from .
Step 3.3.1.12
Subtract from .
Step 3.3.1.13
Factor using the perfect square rule.
Step 3.3.1.13.1
Rearrange terms.
Step 3.3.1.13.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 3.3.1.13.3
Rewrite the polynomial.
Step 3.3.1.13.4
Factor using the perfect square trinomial rule , where and .
Step 3.3.1.14
Pull terms out from under the radical, assuming positive real numbers.
Step 3.3.2
Multiply by .
Step 3.3.3
Simplify .
Step 3.3.4
Simplify the numerator.
Step 3.3.4.1
Apply the distributive property.
Step 3.3.4.2
Multiply .
Step 3.3.4.2.1
Multiply by .
Step 3.3.4.2.2
Multiply by .
Step 3.3.4.3
Multiply .
Step 3.3.4.3.1
Multiply by .
Step 3.3.4.3.2
Multiply by .
Step 3.4
The final answer is the combination of both solutions.