Finite Math Examples

Find Three Ordered Pair Solutions (2x-y)-12i=16+6yi
Step 1
Solve the equation for .
Tap for more steps...
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 1.2.1
Subtract from both sides of the equation.
Step 1.2.2
Add to both sides of the equation.
Step 1.3
Factor out of .
Tap for more steps...
Step 1.3.1
Factor out of .
Step 1.3.2
Factor out of .
Step 1.3.3
Factor out of .
Step 1.4
Divide each term in by and simplify.
Tap for more steps...
Step 1.4.1
Divide each term in by .
Step 1.4.2
Simplify the left side.
Tap for more steps...
Step 1.4.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.4.2.1.1
Cancel the common factor.
Step 1.4.2.1.2
Divide by .
Step 1.4.3
Simplify the right side.
Tap for more steps...
Step 1.4.3.1
Simplify terms.
Tap for more steps...
Step 1.4.3.1.1
Simplify each term.
Tap for more steps...
Step 1.4.3.1.1.1
Multiply the numerator and denominator of by the conjugate of to make the denominator real.
Step 1.4.3.1.1.2
Multiply.
Tap for more steps...
Step 1.4.3.1.1.2.1
Combine.
Step 1.4.3.1.1.2.2
Simplify the numerator.
Tap for more steps...
Step 1.4.3.1.1.2.2.1
Apply the distributive property.
Step 1.4.3.1.1.2.2.2
Multiply by .
Step 1.4.3.1.1.2.2.3
Multiply by .
Step 1.4.3.1.1.2.3
Simplify the denominator.
Tap for more steps...
Step 1.4.3.1.1.2.3.1
Expand using the FOIL Method.
Tap for more steps...
Step 1.4.3.1.1.2.3.1.1
Apply the distributive property.
Step 1.4.3.1.1.2.3.1.2
Apply the distributive property.
Step 1.4.3.1.1.2.3.1.3
Apply the distributive property.
Step 1.4.3.1.1.2.3.2
Simplify.
Tap for more steps...
Step 1.4.3.1.1.2.3.2.1
Multiply by .
Step 1.4.3.1.1.2.3.2.2
Multiply by .
Step 1.4.3.1.1.2.3.2.3
Multiply by .
Step 1.4.3.1.1.2.3.2.4
Multiply by .
Step 1.4.3.1.1.2.3.2.5
Raise to the power of .
Step 1.4.3.1.1.2.3.2.6
Raise to the power of .
Step 1.4.3.1.1.2.3.2.7
Use the power rule to combine exponents.
Step 1.4.3.1.1.2.3.2.8
Add and .
Step 1.4.3.1.1.2.3.2.9
Add and .
Step 1.4.3.1.1.2.3.2.10
Add and .
Step 1.4.3.1.1.2.3.3
Simplify each term.
Tap for more steps...
Step 1.4.3.1.1.2.3.3.1
Rewrite as .
Step 1.4.3.1.1.2.3.3.2
Multiply by .
Step 1.4.3.1.1.2.3.4
Add and .
Step 1.4.3.1.1.3
Split the fraction into two fractions.
Step 1.4.3.1.1.4
Move the negative in front of the fraction.
Step 1.4.3.1.1.5
Multiply the numerator and denominator of by the conjugate of to make the denominator real.
Step 1.4.3.1.1.6
Multiply.
Tap for more steps...
Step 1.4.3.1.1.6.1
Combine.
Step 1.4.3.1.1.6.2
Simplify the numerator.
Tap for more steps...
Step 1.4.3.1.1.6.2.1
Apply the distributive property.
Step 1.4.3.1.1.6.2.2
Multiply by .
Step 1.4.3.1.1.6.2.3
Multiply by .
Step 1.4.3.1.1.6.3
Simplify the denominator.
Tap for more steps...
Step 1.4.3.1.1.6.3.1
Expand using the FOIL Method.
Tap for more steps...
Step 1.4.3.1.1.6.3.1.1
Apply the distributive property.
Step 1.4.3.1.1.6.3.1.2
Apply the distributive property.
Step 1.4.3.1.1.6.3.1.3
Apply the distributive property.
Step 1.4.3.1.1.6.3.2
Simplify.
Tap for more steps...
Step 1.4.3.1.1.6.3.2.1
Multiply by .
Step 1.4.3.1.1.6.3.2.2
Multiply by .
Step 1.4.3.1.1.6.3.2.3
Multiply by .
Step 1.4.3.1.1.6.3.2.4
Multiply by .
Step 1.4.3.1.1.6.3.2.5
Raise to the power of .
Step 1.4.3.1.1.6.3.2.6
Raise to the power of .
Step 1.4.3.1.1.6.3.2.7
Use the power rule to combine exponents.
Step 1.4.3.1.1.6.3.2.8
Add and .
Step 1.4.3.1.1.6.3.2.9
Add and .
Step 1.4.3.1.1.6.3.2.10
Add and .
Step 1.4.3.1.1.6.3.3
Simplify each term.
Tap for more steps...
Step 1.4.3.1.1.6.3.3.1
Rewrite as .
Step 1.4.3.1.1.6.3.3.2
Multiply by .
Step 1.4.3.1.1.6.3.4
Add and .
Step 1.4.3.1.1.7
Factor out of .
Tap for more steps...
Step 1.4.3.1.1.7.1
Factor out of .
Step 1.4.3.1.1.7.2
Factor out of .
Step 1.4.3.1.1.7.3
Factor out of .
Step 1.4.3.1.1.8
Multiply the numerator and denominator of by the conjugate of to make the denominator real.
Step 1.4.3.1.1.9
Multiply.
Tap for more steps...
Step 1.4.3.1.1.9.1
Combine.
Step 1.4.3.1.1.9.2
Simplify the numerator.
Tap for more steps...
Step 1.4.3.1.1.9.2.1
Apply the distributive property.
Step 1.4.3.1.1.9.2.2
Multiply by .
Step 1.4.3.1.1.9.2.3
Multiply .
Tap for more steps...
Step 1.4.3.1.1.9.2.3.1
Multiply by .
Step 1.4.3.1.1.9.2.3.2
Raise to the power of .
Step 1.4.3.1.1.9.2.3.3
Raise to the power of .
Step 1.4.3.1.1.9.2.3.4
Use the power rule to combine exponents.
Step 1.4.3.1.1.9.2.3.5
Add and .
Step 1.4.3.1.1.9.2.4
Simplify each term.
Tap for more steps...
Step 1.4.3.1.1.9.2.4.1
Rewrite as .
Step 1.4.3.1.1.9.2.4.2
Multiply by .
Step 1.4.3.1.1.9.2.5
Reorder and .
Step 1.4.3.1.1.9.3
Simplify the denominator.
Tap for more steps...
Step 1.4.3.1.1.9.3.1
Expand using the FOIL Method.
Tap for more steps...
Step 1.4.3.1.1.9.3.1.1
Apply the distributive property.
Step 1.4.3.1.1.9.3.1.2
Apply the distributive property.
Step 1.4.3.1.1.9.3.1.3
Apply the distributive property.
Step 1.4.3.1.1.9.3.2
Simplify.
Tap for more steps...
Step 1.4.3.1.1.9.3.2.1
Multiply by .
Step 1.4.3.1.1.9.3.2.2
Multiply by .
Step 1.4.3.1.1.9.3.2.3
Multiply by .
Step 1.4.3.1.1.9.3.2.4
Multiply by .
Step 1.4.3.1.1.9.3.2.5
Raise to the power of .
Step 1.4.3.1.1.9.3.2.6
Raise to the power of .
Step 1.4.3.1.1.9.3.2.7
Use the power rule to combine exponents.
Step 1.4.3.1.1.9.3.2.8
Add and .
Step 1.4.3.1.1.9.3.2.9
Add and .
Step 1.4.3.1.1.9.3.2.10
Add and .
Step 1.4.3.1.1.9.3.3
Simplify each term.
Tap for more steps...
Step 1.4.3.1.1.9.3.3.1
Rewrite as .
Step 1.4.3.1.1.9.3.3.2
Multiply by .
Step 1.4.3.1.1.9.3.4
Add and .
Step 1.4.3.1.1.10
Split the fraction into two fractions.
Step 1.4.3.1.1.11
Simplify each term.
Tap for more steps...
Step 1.4.3.1.1.11.1
Move the negative in front of the fraction.
Step 1.4.3.1.1.11.2
Move the negative in front of the fraction.
Step 1.4.3.1.2
Combine the numerators over the common denominator.
Step 1.4.3.1.3
Simplify each term.
Tap for more steps...
Step 1.4.3.1.3.1
Apply the distributive property.
Step 1.4.3.1.3.2
Multiply by .
Step 1.4.3.1.3.3
Multiply by .
Step 1.4.3.1.4
Simplify by adding terms.
Tap for more steps...
Step 1.4.3.1.4.1
Subtract from .
Step 1.4.3.1.4.2
Subtract from .
Step 1.4.3.2
Simplify the numerator.
Tap for more steps...
Step 1.4.3.2.1
Factor out of .
Tap for more steps...
Step 1.4.3.2.1.1
Factor out of .
Step 1.4.3.2.1.2
Factor out of .
Step 1.4.3.2.1.3
Factor out of .
Step 1.4.3.2.1.4
Factor out of .
Step 1.4.3.2.1.5
Factor out of .
Step 1.4.3.2.1.6
Factor out of .
Step 1.4.3.2.1.7
Factor out of .
Step 1.4.3.2.2
Reorder terms.
Step 1.4.3.3
Simplify with factoring out.
Tap for more steps...
Step 1.4.3.3.1
Factor out of .
Step 1.4.3.3.2
Factor out of .
Step 1.4.3.3.3
Factor out of .
Step 1.4.3.3.4
Rewrite as .
Step 1.4.3.3.5
Factor out of .
Step 1.4.3.3.6
Factor out of .
Step 1.4.3.3.7
Factor out of .
Step 1.4.3.3.8
Simplify the expression.
Tap for more steps...
Step 1.4.3.3.8.1
Rewrite as .
Step 1.4.3.3.8.2
Move the negative in front of the fraction.
Step 2
Choose any value for that is in the domain to plug into the equation.
Step 3
Choose to substitute in for to find the ordered pair.
Tap for more steps...
Step 3.1
Multiply by .
Step 3.2
Remove parentheses.
Step 3.3
Simplify the numerator.
Tap for more steps...
Step 3.3.1
Multiply by .
Step 3.3.2
Multiply by .
Step 3.3.3
Multiply by .
Step 3.3.4
Add and .
Step 3.3.5
Add and .
Step 3.4
Use the and values to form the ordered pair.
Step 4
Choose to substitute in for to find the ordered pair.
Tap for more steps...
Step 4.1
Multiply by .
Step 4.2
Remove parentheses.
Step 4.3
Simplify the numerator.
Tap for more steps...
Step 4.3.1
Multiply by .
Step 4.3.2
Multiply by .
Step 4.3.3
Subtract from .
Step 4.3.4
Add and .
Step 4.4
Use the and values to form the ordered pair.
Step 5
Choose to substitute in for to find the ordered pair.
Tap for more steps...
Step 5.1
Multiply by .
Step 5.2
Remove parentheses.
Step 5.3
Simplify the numerator.
Tap for more steps...
Step 5.3.1
Multiply by .
Step 5.3.2
Multiply by .
Step 5.3.3
Subtract from .
Step 5.3.4
Add and .
Step 5.4
Use the and values to form the ordered pair.
Step 6
These are three possible solutions to the equation.
Step 7