Enter a problem...
Finite Math Examples
Step 1
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Move all terms not containing to the right side of the equation.
Step 1.2.1
Subtract from both sides of the equation.
Step 1.2.2
Add to both sides of the equation.
Step 1.3
Factor out of .
Step 1.3.1
Factor out of .
Step 1.3.2
Factor out of .
Step 1.3.3
Factor out of .
Step 1.4
Divide each term in by and simplify.
Step 1.4.1
Divide each term in by .
Step 1.4.2
Simplify the left side.
Step 1.4.2.1
Cancel the common factor of .
Step 1.4.2.1.1
Cancel the common factor.
Step 1.4.2.1.2
Divide by .
Step 1.4.3
Simplify the right side.
Step 1.4.3.1
Simplify terms.
Step 1.4.3.1.1
Simplify each term.
Step 1.4.3.1.1.1
Multiply the numerator and denominator of by the conjugate of to make the denominator real.
Step 1.4.3.1.1.2
Multiply.
Step 1.4.3.1.1.2.1
Combine.
Step 1.4.3.1.1.2.2
Simplify the numerator.
Step 1.4.3.1.1.2.2.1
Apply the distributive property.
Step 1.4.3.1.1.2.2.2
Multiply by .
Step 1.4.3.1.1.2.2.3
Multiply by .
Step 1.4.3.1.1.2.3
Simplify the denominator.
Step 1.4.3.1.1.2.3.1
Expand using the FOIL Method.
Step 1.4.3.1.1.2.3.1.1
Apply the distributive property.
Step 1.4.3.1.1.2.3.1.2
Apply the distributive property.
Step 1.4.3.1.1.2.3.1.3
Apply the distributive property.
Step 1.4.3.1.1.2.3.2
Simplify.
Step 1.4.3.1.1.2.3.2.1
Multiply by .
Step 1.4.3.1.1.2.3.2.2
Multiply by .
Step 1.4.3.1.1.2.3.2.3
Multiply by .
Step 1.4.3.1.1.2.3.2.4
Multiply by .
Step 1.4.3.1.1.2.3.2.5
Raise to the power of .
Step 1.4.3.1.1.2.3.2.6
Raise to the power of .
Step 1.4.3.1.1.2.3.2.7
Use the power rule to combine exponents.
Step 1.4.3.1.1.2.3.2.8
Add and .
Step 1.4.3.1.1.2.3.2.9
Add and .
Step 1.4.3.1.1.2.3.2.10
Add and .
Step 1.4.3.1.1.2.3.3
Simplify each term.
Step 1.4.3.1.1.2.3.3.1
Rewrite as .
Step 1.4.3.1.1.2.3.3.2
Multiply by .
Step 1.4.3.1.1.2.3.4
Add and .
Step 1.4.3.1.1.3
Split the fraction into two fractions.
Step 1.4.3.1.1.4
Move the negative in front of the fraction.
Step 1.4.3.1.1.5
Multiply the numerator and denominator of by the conjugate of to make the denominator real.
Step 1.4.3.1.1.6
Multiply.
Step 1.4.3.1.1.6.1
Combine.
Step 1.4.3.1.1.6.2
Simplify the numerator.
Step 1.4.3.1.1.6.2.1
Apply the distributive property.
Step 1.4.3.1.1.6.2.2
Multiply by .
Step 1.4.3.1.1.6.2.3
Multiply by .
Step 1.4.3.1.1.6.3
Simplify the denominator.
Step 1.4.3.1.1.6.3.1
Expand using the FOIL Method.
Step 1.4.3.1.1.6.3.1.1
Apply the distributive property.
Step 1.4.3.1.1.6.3.1.2
Apply the distributive property.
Step 1.4.3.1.1.6.3.1.3
Apply the distributive property.
Step 1.4.3.1.1.6.3.2
Simplify.
Step 1.4.3.1.1.6.3.2.1
Multiply by .
Step 1.4.3.1.1.6.3.2.2
Multiply by .
Step 1.4.3.1.1.6.3.2.3
Multiply by .
Step 1.4.3.1.1.6.3.2.4
Multiply by .
Step 1.4.3.1.1.6.3.2.5
Raise to the power of .
Step 1.4.3.1.1.6.3.2.6
Raise to the power of .
Step 1.4.3.1.1.6.3.2.7
Use the power rule to combine exponents.
Step 1.4.3.1.1.6.3.2.8
Add and .
Step 1.4.3.1.1.6.3.2.9
Add and .
Step 1.4.3.1.1.6.3.2.10
Add and .
Step 1.4.3.1.1.6.3.3
Simplify each term.
Step 1.4.3.1.1.6.3.3.1
Rewrite as .
Step 1.4.3.1.1.6.3.3.2
Multiply by .
Step 1.4.3.1.1.6.3.4
Add and .
Step 1.4.3.1.1.7
Factor out of .
Step 1.4.3.1.1.7.1
Factor out of .
Step 1.4.3.1.1.7.2
Factor out of .
Step 1.4.3.1.1.7.3
Factor out of .
Step 1.4.3.1.1.8
Multiply the numerator and denominator of by the conjugate of to make the denominator real.
Step 1.4.3.1.1.9
Multiply.
Step 1.4.3.1.1.9.1
Combine.
Step 1.4.3.1.1.9.2
Simplify the numerator.
Step 1.4.3.1.1.9.2.1
Apply the distributive property.
Step 1.4.3.1.1.9.2.2
Multiply by .
Step 1.4.3.1.1.9.2.3
Multiply .
Step 1.4.3.1.1.9.2.3.1
Multiply by .
Step 1.4.3.1.1.9.2.3.2
Raise to the power of .
Step 1.4.3.1.1.9.2.3.3
Raise to the power of .
Step 1.4.3.1.1.9.2.3.4
Use the power rule to combine exponents.
Step 1.4.3.1.1.9.2.3.5
Add and .
Step 1.4.3.1.1.9.2.4
Simplify each term.
Step 1.4.3.1.1.9.2.4.1
Rewrite as .
Step 1.4.3.1.1.9.2.4.2
Multiply by .
Step 1.4.3.1.1.9.2.5
Reorder and .
Step 1.4.3.1.1.9.3
Simplify the denominator.
Step 1.4.3.1.1.9.3.1
Expand using the FOIL Method.
Step 1.4.3.1.1.9.3.1.1
Apply the distributive property.
Step 1.4.3.1.1.9.3.1.2
Apply the distributive property.
Step 1.4.3.1.1.9.3.1.3
Apply the distributive property.
Step 1.4.3.1.1.9.3.2
Simplify.
Step 1.4.3.1.1.9.3.2.1
Multiply by .
Step 1.4.3.1.1.9.3.2.2
Multiply by .
Step 1.4.3.1.1.9.3.2.3
Multiply by .
Step 1.4.3.1.1.9.3.2.4
Multiply by .
Step 1.4.3.1.1.9.3.2.5
Raise to the power of .
Step 1.4.3.1.1.9.3.2.6
Raise to the power of .
Step 1.4.3.1.1.9.3.2.7
Use the power rule to combine exponents.
Step 1.4.3.1.1.9.3.2.8
Add and .
Step 1.4.3.1.1.9.3.2.9
Add and .
Step 1.4.3.1.1.9.3.2.10
Add and .
Step 1.4.3.1.1.9.3.3
Simplify each term.
Step 1.4.3.1.1.9.3.3.1
Rewrite as .
Step 1.4.3.1.1.9.3.3.2
Multiply by .
Step 1.4.3.1.1.9.3.4
Add and .
Step 1.4.3.1.1.10
Split the fraction into two fractions.
Step 1.4.3.1.1.11
Simplify each term.
Step 1.4.3.1.1.11.1
Move the negative in front of the fraction.
Step 1.4.3.1.1.11.2
Move the negative in front of the fraction.
Step 1.4.3.1.2
Combine the numerators over the common denominator.
Step 1.4.3.1.3
Simplify each term.
Step 1.4.3.1.3.1
Apply the distributive property.
Step 1.4.3.1.3.2
Multiply by .
Step 1.4.3.1.3.3
Multiply by .
Step 1.4.3.1.4
Simplify by adding terms.
Step 1.4.3.1.4.1
Subtract from .
Step 1.4.3.1.4.2
Subtract from .
Step 1.4.3.2
Simplify the numerator.
Step 1.4.3.2.1
Factor out of .
Step 1.4.3.2.1.1
Factor out of .
Step 1.4.3.2.1.2
Factor out of .
Step 1.4.3.2.1.3
Factor out of .
Step 1.4.3.2.1.4
Factor out of .
Step 1.4.3.2.1.5
Factor out of .
Step 1.4.3.2.1.6
Factor out of .
Step 1.4.3.2.1.7
Factor out of .
Step 1.4.3.2.2
Reorder terms.
Step 1.4.3.3
Simplify with factoring out.
Step 1.4.3.3.1
Factor out of .
Step 1.4.3.3.2
Factor out of .
Step 1.4.3.3.3
Factor out of .
Step 1.4.3.3.4
Rewrite as .
Step 1.4.3.3.5
Factor out of .
Step 1.4.3.3.6
Factor out of .
Step 1.4.3.3.7
Factor out of .
Step 1.4.3.3.8
Simplify the expression.
Step 1.4.3.3.8.1
Rewrite as .
Step 1.4.3.3.8.2
Move the negative in front of the fraction.
Step 2
Choose any value for that is in the domain to plug into the equation.
Step 3
Step 3.1
Multiply by .
Step 3.2
Remove parentheses.
Step 3.3
Simplify the numerator.
Step 3.3.1
Multiply by .
Step 3.3.2
Multiply by .
Step 3.3.3
Multiply by .
Step 3.3.4
Add and .
Step 3.3.5
Add and .
Step 3.4
Use the and values to form the ordered pair.
Step 4
Step 4.1
Multiply by .
Step 4.2
Remove parentheses.
Step 4.3
Simplify the numerator.
Step 4.3.1
Multiply by .
Step 4.3.2
Multiply by .
Step 4.3.3
Subtract from .
Step 4.3.4
Add and .
Step 4.4
Use the and values to form the ordered pair.
Step 5
Step 5.1
Multiply by .
Step 5.2
Remove parentheses.
Step 5.3
Simplify the numerator.
Step 5.3.1
Multiply by .
Step 5.3.2
Multiply by .
Step 5.3.3
Subtract from .
Step 5.3.4
Add and .
Step 5.4
Use the and values to form the ordered pair.
Step 6
These are three possible solutions to the equation.
Step 7