Finite Math Examples

Find the Mean of the Frequency Table table[[x,y],[6.95-7.45,2],[7.45-7.95,10],[7.95-8.45,21],[8.45-8.95,37],[8.95-9.45,18],[9.45-9.95,10],[9.95-10.45,2]]
xy6.95-7.4527.45-7.95107.95-8.45218.45-8.95378.95-9.45189.45-9.95109.95-10.452
Step 1
Find the midpoint M for each class.
xyMidpoint(M)6.95-7.4527.27.45-7.95107.77.95-8.45218.28.45-8.95378.78.95-9.45189.29.45-9.95109.79.95-10.45210.2
Step 2
Multiply the frequency of each class by the class midpoint.
xyMidpoint(M)fM6.95-7.4527.227.27.45-7.95107.7107.77.95-8.45218.2218.28.45-8.95378.7378.78.95-9.45189.2189.29.45-9.95109.7109.79.95-10.45210.2210.2
Step 3
Simplify the fM column.
xyMidpoint(M)fM6.95-7.4527.214.47.45-7.95107.7777.95-8.45218.2172.28.45-8.95378.7321.98.95-9.45189.2165.69.45-9.95109.7979.95-10.45210.220.4
Step 4
Add the values in the fM column.
14.4+77+172.2+321.9+165.6+97+20.4=868.5
Step 5
Add the values in the frequency column.
n=2+10+21+37+18+10+2=100
Step 6
The mean (mu) is the sum of fM divided by n, which is the sum of frequencies.
μ=fMf
Step 7
The mean is the sum of the product of the midpoints and frequencies divided by the total of frequencies.
μ=868.5100
Step 8
Simplify the right side of μ=868.5100.
8.685
 [x2  12  π  xdx ]