Finite Math Examples

Find the Angle Between the Vectors (9,8) , (9,3)
(9,8)(9,8) , (9,3)(9,3)
Step 1
Use the dot product formula to find the angle between two vectors.
θ=arccos(a⃗b⃗|a⃗||b⃗|)θ=arccos(a⃗b⃗|a⃗||b⃗|)
Step 2
Find the dot product.
Tap for more steps...
Step 2.1
The dot product of two vectors is the sum of the products of the their components.
a⃗b⃗=99+83a⃗b⃗=99+83
Step 2.2
Simplify.
Tap for more steps...
Step 2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1
Multiply 99 by 99.
a⃗b⃗=81+83a⃗b⃗=81+83
Step 2.2.1.2
Multiply 88 by 33.
a⃗b⃗=81+24a⃗b⃗=81+24
a⃗b⃗=81+24a⃗b⃗=81+24
Step 2.2.2
Add 8181 and 2424.
a⃗b⃗=105a⃗b⃗=105
a⃗b⃗=105a⃗b⃗=105
a⃗b⃗=105a⃗b⃗=105
Step 3
Find the magnitude of a⃗a⃗.
Tap for more steps...
Step 3.1
The norm is the square root of the sum of squares of each element in the vector.
|a⃗|=92+82|a⃗|=92+82
Step 3.2
Simplify.
Tap for more steps...
Step 3.2.1
Raise 99 to the power of 22.
|a⃗|=81+82|a⃗|=81+82
Step 3.2.2
Raise 88 to the power of 22.
|a⃗|=81+64|a⃗|=81+64
Step 3.2.3
Add 8181 and 6464.
|a⃗|=145|a⃗|=145
|a⃗|=145|a⃗|=145
|a⃗|=145|a⃗|=145
Step 4
Find the magnitude of b⃗b⃗.
Tap for more steps...
Step 4.1
The norm is the square root of the sum of squares of each element in the vector.
|b⃗|=92+32|b⃗|=92+32
Step 4.2
Simplify.
Tap for more steps...
Step 4.2.1
Raise 99 to the power of 22.
|b⃗|=81+32|b⃗|=81+32
Step 4.2.2
Raise 33 to the power of 22.
|b⃗|=81+9|b⃗|=81+9
Step 4.2.3
Add 8181 and 99.
|b⃗|=90|b⃗|=90
Step 4.2.4
Rewrite 9090 as 32103210.
Tap for more steps...
Step 4.2.4.1
Factor 99 out of 9090.
|b⃗|=9(10)|b⃗|=9(10)
Step 4.2.4.2
Rewrite 99 as 3232.
|b⃗|=3210|b⃗|=3210
|b⃗|=3210|b⃗|=3210
Step 4.2.5
Pull terms out from under the radical.
|b⃗|=310|b⃗|=310
|b⃗|=310|b⃗|=310
|b⃗|=310|b⃗|=310
Step 5
Substitute the values into the formula.
θ=arccos(105145(310))θ=arccos105145(310)
Step 6
Simplify.
Tap for more steps...
Step 6.1
Cancel the common factor of 105105 and 33.
Tap for more steps...
Step 6.1.1
Factor 33 out of 105105.
θ=arccos(335145(310))θ=arccos335145(310)
Step 6.1.2
Cancel the common factors.
Tap for more steps...
Step 6.1.2.1
Factor 33 out of 145(310)145(310).
θ=arccos(3353(145(10)))θ=arccos3353(145(10))
Step 6.1.2.2
Cancel the common factor.
θ=arccos(3353(145(10)))
Step 6.1.2.3
Rewrite the expression.
θ=arccos(35145(10))
θ=arccos(35145(10))
θ=arccos(35145(10))
Step 6.2
Simplify the denominator.
Tap for more steps...
Step 6.2.1
Combine using the product rule for radicals.
θ=arccos(3514510)
Step 6.2.2
Multiply 145 by 10.
θ=arccos(351450)
θ=arccos(351450)
Step 6.3
Simplify the denominator.
Tap for more steps...
Step 6.3.1
Rewrite 1450 as 5258.
Tap for more steps...
Step 6.3.1.1
Factor 25 out of 1450.
θ=arccos(3525(58))
Step 6.3.1.2
Rewrite 25 as 52.
θ=arccos(355258)
θ=arccos(355258)
Step 6.3.2
Pull terms out from under the radical.
θ=arccos(35558)
θ=arccos(35558)
Step 6.4
Cancel the common factor of 35 and 5.
Tap for more steps...
Step 6.4.1
Factor 5 out of 35.
θ=arccos(57558)
Step 6.4.2
Cancel the common factors.
Tap for more steps...
Step 6.4.2.1
Factor 5 out of 558.
θ=arccos(575(58))
Step 6.4.2.2
Cancel the common factor.
θ=arccos(57558)
Step 6.4.2.3
Rewrite the expression.
θ=arccos(758)
θ=arccos(758)
θ=arccos(758)
Step 6.5
Multiply 758 by 5858.
θ=arccos(7585858)
Step 6.6
Combine and simplify the denominator.
Tap for more steps...
Step 6.6.1
Multiply 758 by 5858.
θ=arccos(7585858)
Step 6.6.2
Raise 58 to the power of 1.
θ=arccos(75858158)
Step 6.6.3
Raise 58 to the power of 1.
θ=arccos(758581581)
Step 6.6.4
Use the power rule aman=am+n to combine exponents.
θ=arccos(758581+1)
Step 6.6.5
Add 1 and 1.
θ=arccos(758582)
Step 6.6.6
Rewrite 582 as 58.
Tap for more steps...
Step 6.6.6.1
Use nax=axn to rewrite 58 as 5812.
θ=arccos(758(5812)2)
Step 6.6.6.2
Apply the power rule and multiply exponents, (am)n=amn.
θ=arccos(75858122)
Step 6.6.6.3
Combine 12 and 2.
θ=arccos(7585822)
Step 6.6.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 6.6.6.4.1
Cancel the common factor.
θ=arccos(7585822)
Step 6.6.6.4.2
Rewrite the expression.
θ=arccos(758581)
θ=arccos(758581)
Step 6.6.6.5
Evaluate the exponent.
θ=arccos(75858)
θ=arccos(75858)
θ=arccos(75858)
Step 6.7
Evaluate arccos(75858).
θ=23.19859051
θ=23.19859051
 [x2  12  π  xdx ]