Enter a problem...
Finite Math Examples
(9,8)(9,8) , (9,3)(9,3)
Step 1
Use the dot product formula to find the angle between two vectors.
θ=arccos(a⃗⋅b⃗|a⃗||b⃗|)θ=arccos(a⃗⋅b⃗|a⃗||b⃗|)
Step 2
Step 2.1
The dot product of two vectors is the sum of the products of the their components.
a⃗⋅b⃗=9⋅9+8⋅3a⃗⋅b⃗=9⋅9+8⋅3
Step 2.2
Simplify.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Multiply 99 by 99.
a⃗⋅b⃗=81+8⋅3a⃗⋅b⃗=81+8⋅3
Step 2.2.1.2
Multiply 88 by 33.
a⃗⋅b⃗=81+24a⃗⋅b⃗=81+24
a⃗⋅b⃗=81+24a⃗⋅b⃗=81+24
Step 2.2.2
Add 8181 and 2424.
a⃗⋅b⃗=105a⃗⋅b⃗=105
a⃗⋅b⃗=105a⃗⋅b⃗=105
a⃗⋅b⃗=105a⃗⋅b⃗=105
Step 3
Step 3.1
The norm is the square root of the sum of squares of each element in the vector.
|a⃗|=√92+82|a⃗|=√92+82
Step 3.2
Simplify.
Step 3.2.1
Raise 99 to the power of 22.
|a⃗|=√81+82|a⃗|=√81+82
Step 3.2.2
Raise 88 to the power of 22.
|a⃗|=√81+64|a⃗|=√81+64
Step 3.2.3
Add 8181 and 6464.
|a⃗|=√145|a⃗|=√145
|a⃗|=√145|a⃗|=√145
|a⃗|=√145|a⃗|=√145
Step 4
Step 4.1
The norm is the square root of the sum of squares of each element in the vector.
|b⃗|=√92+32|b⃗|=√92+32
Step 4.2
Simplify.
Step 4.2.1
Raise 99 to the power of 22.
|b⃗|=√81+32|b⃗|=√81+32
Step 4.2.2
Raise 33 to the power of 22.
|b⃗|=√81+9|b⃗|=√81+9
Step 4.2.3
Add 8181 and 99.
|b⃗|=√90|b⃗|=√90
Step 4.2.4
Rewrite 9090 as 32⋅1032⋅10.
Step 4.2.4.1
Factor 99 out of 9090.
|b⃗|=√9(10)|b⃗|=√9(10)
Step 4.2.4.2
Rewrite 99 as 3232.
|b⃗|=√32⋅10|b⃗|=√32⋅10
|b⃗|=√32⋅10|b⃗|=√32⋅10
Step 4.2.5
Pull terms out from under the radical.
|b⃗|=3√10|b⃗|=3√10
|b⃗|=3√10|b⃗|=3√10
|b⃗|=3√10|b⃗|=3√10
Step 5
Substitute the values into the formula.
θ=arccos(105√145(3√10))θ=arccos⎛⎜⎝105√145(3√10)⎞⎟⎠
Step 6
Step 6.1
Cancel the common factor of 105105 and 33.
Step 6.1.1
Factor 33 out of 105105.
θ=arccos(3⋅35√145(3√10))θ=arccos⎛⎜⎝3⋅35√145(3√10)⎞⎟⎠
Step 6.1.2
Cancel the common factors.
Step 6.1.2.1
Factor 33 out of √145(3√10)√145(3√10).
θ=arccos(3⋅353(√145(√10)))θ=arccos⎛⎜⎝3⋅353(√145(√10))⎞⎟⎠
Step 6.1.2.2
Cancel the common factor.
θ=arccos(3⋅353(√145(√10)))
Step 6.1.2.3
Rewrite the expression.
θ=arccos(35√145(√10))
θ=arccos(35√145(√10))
θ=arccos(35√145(√10))
Step 6.2
Simplify the denominator.
Step 6.2.1
Combine using the product rule for radicals.
θ=arccos(35√145⋅10)
Step 6.2.2
Multiply 145 by 10.
θ=arccos(35√1450)
θ=arccos(35√1450)
Step 6.3
Simplify the denominator.
Step 6.3.1
Rewrite 1450 as 52⋅58.
Step 6.3.1.1
Factor 25 out of 1450.
θ=arccos(35√25(58))
Step 6.3.1.2
Rewrite 25 as 52.
θ=arccos(35√52⋅58)
θ=arccos(35√52⋅58)
Step 6.3.2
Pull terms out from under the radical.
θ=arccos(355√58)
θ=arccos(355√58)
Step 6.4
Cancel the common factor of 35 and 5.
Step 6.4.1
Factor 5 out of 35.
θ=arccos(5⋅75√58)
Step 6.4.2
Cancel the common factors.
Step 6.4.2.1
Factor 5 out of 5√58.
θ=arccos(5⋅75(√58))
Step 6.4.2.2
Cancel the common factor.
θ=arccos(5⋅75√58)
Step 6.4.2.3
Rewrite the expression.
θ=arccos(7√58)
θ=arccos(7√58)
θ=arccos(7√58)
Step 6.5
Multiply 7√58 by √58√58.
θ=arccos(7√58⋅√58√58)
Step 6.6
Combine and simplify the denominator.
Step 6.6.1
Multiply 7√58 by √58√58.
θ=arccos(7√58√58√58)
Step 6.6.2
Raise √58 to the power of 1.
θ=arccos(7√58√581√58)
Step 6.6.3
Raise √58 to the power of 1.
θ=arccos(7√58√581√581)
Step 6.6.4
Use the power rule aman=am+n to combine exponents.
θ=arccos(7√58√581+1)
Step 6.6.5
Add 1 and 1.
θ=arccos(7√58√582)
Step 6.6.6
Rewrite √582 as 58.
Step 6.6.6.1
Use n√ax=axn to rewrite √58 as 5812.
θ=arccos(7√58(5812)2)
Step 6.6.6.2
Apply the power rule and multiply exponents, (am)n=amn.
θ=arccos(7√585812⋅2)
Step 6.6.6.3
Combine 12 and 2.
θ=arccos(7√585822)
Step 6.6.6.4
Cancel the common factor of 2.
Step 6.6.6.4.1
Cancel the common factor.
θ=arccos(7√585822)
Step 6.6.6.4.2
Rewrite the expression.
θ=arccos(7√58581)
θ=arccos(7√58581)
Step 6.6.6.5
Evaluate the exponent.
θ=arccos(7√5858)
θ=arccos(7√5858)
θ=arccos(7√5858)
Step 6.7
Evaluate arccos(7√5858).
θ=23.19859051
θ=23.19859051