Enter a problem...
Finite Math Examples
Step 1
Step 1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
Step 1.2
Multiply each row in the first matrix by each column in the second matrix.
Step 2
Write as a linear system of equations.
Step 3
Step 3.1
Solve for in .
Step 3.1.1
Move all terms not containing to the right side of the equation.
Step 3.1.1.1
Add to both sides of the equation.
Step 3.1.1.2
Add to both sides of the equation.
Step 3.1.2
Divide each term in by and simplify.
Step 3.1.2.1
Divide each term in by .
Step 3.1.2.2
Simplify the left side.
Step 3.1.2.2.1
Cancel the common factor of .
Step 3.1.2.2.1.1
Cancel the common factor.
Step 3.1.2.2.1.2
Divide by .
Step 3.1.2.3
Simplify the right side.
Step 3.1.2.3.1
Simplify each term.
Step 3.1.2.3.1.1
Move the negative in front of the fraction.
Step 3.1.2.3.1.2
Cancel the common factor of and .
Step 3.1.2.3.1.2.1
Factor out of .
Step 3.1.2.3.1.2.2
Cancel the common factors.
Step 3.1.2.3.1.2.2.1
Factor out of .
Step 3.1.2.3.1.2.2.2
Cancel the common factor.
Step 3.1.2.3.1.2.2.3
Rewrite the expression.
Step 3.2
Replace all occurrences of with in each equation.
Step 3.2.1
Replace all occurrences of in with .
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Simplify .
Step 3.2.2.1.1
Simplify each term.
Step 3.2.2.1.1.1
Apply the distributive property.
Step 3.2.2.1.1.2
Simplify.
Step 3.2.2.1.1.2.1
Cancel the common factor of .
Step 3.2.2.1.1.2.1.1
Move the leading negative in into the numerator.
Step 3.2.2.1.1.2.1.2
Factor out of .
Step 3.2.2.1.1.2.1.3
Cancel the common factor.
Step 3.2.2.1.1.2.1.4
Rewrite the expression.
Step 3.2.2.1.1.2.2
Multiply by .
Step 3.2.2.1.1.2.3
Cancel the common factor of .
Step 3.2.2.1.1.2.3.1
Factor out of .
Step 3.2.2.1.1.2.3.2
Cancel the common factor.
Step 3.2.2.1.1.2.3.3
Rewrite the expression.
Step 3.2.2.1.1.2.4
Multiply by .
Step 3.2.2.1.1.2.5
Cancel the common factor of .
Step 3.2.2.1.1.2.5.1
Factor out of .
Step 3.2.2.1.1.2.5.2
Cancel the common factor.
Step 3.2.2.1.1.2.5.3
Rewrite the expression.
Step 3.2.2.1.1.2.6
Multiply by .
Step 3.2.2.1.2
Simplify by adding terms.
Step 3.2.2.1.2.1
Add and .
Step 3.2.2.1.2.2
Add and .
Step 3.2.3
Replace all occurrences of in with .
Step 3.2.4
Simplify the left side.
Step 3.2.4.1
Simplify .
Step 3.2.4.1.1
Simplify each term.
Step 3.2.4.1.1.1
Apply the distributive property.
Step 3.2.4.1.1.2
Simplify.
Step 3.2.4.1.1.2.1
Multiply .
Step 3.2.4.1.1.2.1.1
Multiply by .
Step 3.2.4.1.1.2.1.2
Combine and .
Step 3.2.4.1.1.2.1.3
Multiply by .
Step 3.2.4.1.1.2.2
Multiply .
Step 3.2.4.1.1.2.2.1
Combine and .
Step 3.2.4.1.1.2.2.2
Multiply by .
Step 3.2.4.1.1.2.3
Multiply .
Step 3.2.4.1.1.2.3.1
Combine and .
Step 3.2.4.1.1.2.3.2
Multiply by .
Step 3.2.4.1.1.3
Move the negative in front of the fraction.
Step 3.2.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 3.2.4.1.3
Simplify terms.
Step 3.2.4.1.3.1
Combine and .
Step 3.2.4.1.3.2
Combine the numerators over the common denominator.
Step 3.2.4.1.4
Simplify each term.
Step 3.2.4.1.4.1
Simplify the numerator.
Step 3.2.4.1.4.1.1
Factor out of .
Step 3.2.4.1.4.1.1.1
Factor out of .
Step 3.2.4.1.4.1.1.2
Factor out of .
Step 3.2.4.1.4.1.1.3
Factor out of .
Step 3.2.4.1.4.1.2
Multiply by .
Step 3.2.4.1.4.1.3
Subtract from .
Step 3.2.4.1.4.2
Move to the left of .
Step 3.2.4.1.5
To write as a fraction with a common denominator, multiply by .
Step 3.2.4.1.6
Combine and .
Step 3.2.4.1.7
Combine the numerators over the common denominator.
Step 3.2.4.1.8
Combine the numerators over the common denominator.
Step 3.2.4.1.9
Multiply by .
Step 3.2.4.1.10
Add and .
Step 3.2.4.1.11
To write as a fraction with a common denominator, multiply by .
Step 3.2.4.1.12
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 3.2.4.1.12.1
Multiply by .
Step 3.2.4.1.12.2
Multiply by .
Step 3.2.4.1.13
Combine the numerators over the common denominator.
Step 3.2.4.1.14
Multiply by .
Step 3.2.4.1.15
Rewrite as .
Step 3.2.4.1.16
Factor out of .
Step 3.2.4.1.17
Factor out of .
Step 3.2.4.1.18
Factor out of .
Step 3.2.4.1.19
Factor out of .
Step 3.2.4.1.20
Move the negative in front of the fraction.
Step 3.3
Solve for in .
Step 3.3.1
Move all terms not containing to the right side of the equation.
Step 3.3.1.1
Add to both sides of the equation.
Step 3.3.1.2
Subtract from both sides of the equation.
Step 3.3.1.3
Add and .
Step 3.3.2
Divide each term in by and simplify.
Step 3.3.2.1
Divide each term in by .
Step 3.3.2.2
Simplify the left side.
Step 3.3.2.2.1
Cancel the common factor of .
Step 3.3.2.2.1.1
Cancel the common factor.
Step 3.3.2.2.1.2
Divide by .
Step 3.3.2.3
Simplify the right side.
Step 3.3.2.3.1
Simplify each term.
Step 3.3.2.3.1.1
Cancel the common factor of and .
Step 3.3.2.3.1.1.1
Factor out of .
Step 3.3.2.3.1.1.2
Cancel the common factors.
Step 3.3.2.3.1.1.2.1
Factor out of .
Step 3.3.2.3.1.1.2.2
Cancel the common factor.
Step 3.3.2.3.1.1.2.3
Rewrite the expression.
Step 3.3.2.3.1.2
Cancel the common factor of and .
Step 3.3.2.3.1.2.1
Factor out of .
Step 3.3.2.3.1.2.2
Cancel the common factors.
Step 3.3.2.3.1.2.2.1
Factor out of .
Step 3.3.2.3.1.2.2.2
Cancel the common factor.
Step 3.3.2.3.1.2.2.3
Rewrite the expression.
Step 3.3.2.3.1.3
Move the negative in front of the fraction.
Step 3.4
Replace all occurrences of with in each equation.
Step 3.4.1
Replace all occurrences of in with .
Step 3.4.2
Simplify the left side.
Step 3.4.2.1
Simplify .
Step 3.4.2.1.1
Simplify the numerator.
Step 3.4.2.1.1.1
Apply the distributive property.
Step 3.4.2.1.1.2
Multiply .
Step 3.4.2.1.1.2.1
Combine and .
Step 3.4.2.1.1.2.2
Multiply by .
Step 3.4.2.1.1.3
Multiply .
Step 3.4.2.1.1.3.1
Multiply by .
Step 3.4.2.1.1.3.2
Combine and .
Step 3.4.2.1.1.3.3
Multiply by .
Step 3.4.2.1.1.4
Move the negative in front of the fraction.
Step 3.4.2.1.1.5
To write as a fraction with a common denominator, multiply by .
Step 3.4.2.1.1.6
Combine and .
Step 3.4.2.1.1.7
Combine the numerators over the common denominator.
Step 3.4.2.1.1.8
Simplify the numerator.
Step 3.4.2.1.1.8.1
Multiply by .
Step 3.4.2.1.1.8.2
Subtract from .
Step 3.4.2.1.1.9
To write as a fraction with a common denominator, multiply by .
Step 3.4.2.1.1.10
Combine and .
Step 3.4.2.1.1.11
Combine the numerators over the common denominator.
Step 3.4.2.1.1.12
Combine the numerators over the common denominator.
Step 3.4.2.1.1.13
Rewrite in a factored form.
Step 3.4.2.1.1.13.1
Multiply by .
Step 3.4.2.1.1.13.2
Add and .
Step 3.4.2.1.2
Multiply the numerator by the reciprocal of the denominator.
Step 3.4.2.1.3
Multiply .
Step 3.4.2.1.3.1
Multiply by .
Step 3.4.2.1.3.2
Multiply by .
Step 3.4.2.1.4
Factor out of .
Step 3.4.2.1.5
Rewrite as .
Step 3.4.2.1.6
Factor out of .
Step 3.4.2.1.7
Simplify the expression.
Step 3.4.2.1.7.1
Rewrite as .
Step 3.4.2.1.7.2
Move the negative in front of the fraction.
Step 3.4.2.1.7.3
Multiply by .
Step 3.4.2.1.7.4
Multiply by .
Step 3.4.3
Replace all occurrences of in with .
Step 3.4.4
Simplify the right side.
Step 3.4.4.1
Simplify .
Step 3.4.4.1.1
Find the common denominator.
Step 3.4.4.1.1.1
Multiply by .
Step 3.4.4.1.1.2
Multiply by .
Step 3.4.4.1.1.3
Reorder the factors of .
Step 3.4.4.1.1.4
Multiply by .
Step 3.4.4.1.2
Combine the numerators over the common denominator.
Step 3.4.4.1.3
Simplify each term.
Step 3.4.4.1.3.1
Apply the distributive property.
Step 3.4.4.1.3.2
Multiply .
Step 3.4.4.1.3.2.1
Combine and .
Step 3.4.4.1.3.2.2
Multiply by .
Step 3.4.4.1.3.3
Multiply .
Step 3.4.4.1.3.3.1
Multiply by .
Step 3.4.4.1.3.3.2
Combine and .
Step 3.4.4.1.3.3.3
Multiply by .
Step 3.4.4.1.3.4
Move the negative in front of the fraction.
Step 3.4.4.1.3.5
Apply the distributive property.
Step 3.4.4.1.3.6
Multiply .
Step 3.4.4.1.3.6.1
Combine and .
Step 3.4.4.1.3.6.2
Multiply by .
Step 3.4.4.1.3.7
Multiply .
Step 3.4.4.1.3.7.1
Multiply by .
Step 3.4.4.1.3.7.2
Combine and .
Step 3.4.4.1.3.7.3
Multiply by .
Step 3.4.4.1.3.8
Move the negative in front of the fraction.
Step 3.4.4.1.4
To write as a fraction with a common denominator, multiply by .
Step 3.4.4.1.5
Combine and .
Step 3.4.4.1.6
Combine the numerators over the common denominator.
Step 3.4.4.1.7
Simplify the numerator.
Step 3.4.4.1.7.1
Multiply by .
Step 3.4.4.1.7.2
Add and .
Step 3.4.4.1.8
Move the negative in front of the fraction.
Step 3.4.4.1.9
To write as a fraction with a common denominator, multiply by .
Step 3.4.4.1.10
Combine and .
Step 3.4.4.1.11
Combine the numerators over the common denominator.
Step 3.4.4.1.12
Combine the numerators over the common denominator.
Step 3.4.4.1.13
Multiply by .
Step 3.4.4.1.14
Add and .
Step 3.4.4.1.15
Rewrite as .
Step 3.4.4.1.16
Factor out of .
Step 3.4.4.1.17
Factor out of .
Step 3.4.4.1.18
Move the negative in front of the fraction.
Step 3.4.4.1.19
Multiply the numerator by the reciprocal of the denominator.
Step 3.4.4.1.20
Multiply .
Step 3.4.4.1.20.1
Multiply by .
Step 3.4.4.1.20.2
Multiply by .
Step 3.5
Solve for in .
Step 3.5.1
Multiply both sides by .
Step 3.5.2
Simplify.
Step 3.5.2.1
Simplify the left side.
Step 3.5.2.1.1
Cancel the common factor of .
Step 3.5.2.1.1.1
Cancel the common factor.
Step 3.5.2.1.1.2
Rewrite the expression.
Step 3.5.2.2
Simplify the right side.
Step 3.5.2.2.1
Multiply by .
Step 3.5.3
Solve for .
Step 3.5.3.1
Move all terms not containing to the right side of the equation.
Step 3.5.3.1.1
Add to both sides of the equation.
Step 3.5.3.1.2
Add and .
Step 3.5.3.2
Divide each term in by and simplify.
Step 3.5.3.2.1
Divide each term in by .
Step 3.5.3.2.2
Simplify the left side.
Step 3.5.3.2.2.1
Cancel the common factor of .
Step 3.5.3.2.2.1.1
Cancel the common factor.
Step 3.5.3.2.2.1.2
Divide by .
Step 3.6
Replace all occurrences of with in each equation.
Step 3.6.1
Replace all occurrences of in with .
Step 3.6.2
Simplify the right side.
Step 3.6.2.1
Simplify .
Step 3.6.2.1.1
Simplify the numerator.
Step 3.6.2.1.1.1
Cancel the common factor of .
Step 3.6.2.1.1.1.1
Factor out of .
Step 3.6.2.1.1.1.2
Factor out of .
Step 3.6.2.1.1.1.3
Cancel the common factor.
Step 3.6.2.1.1.1.4
Rewrite the expression.
Step 3.6.2.1.1.2
Combine and .
Step 3.6.2.1.1.3
Multiply by .
Step 3.6.2.1.1.4
Move the negative in front of the fraction.
Step 3.6.2.1.1.5
To write as a fraction with a common denominator, multiply by .
Step 3.6.2.1.1.6
Combine and .
Step 3.6.2.1.1.7
Combine the numerators over the common denominator.
Step 3.6.2.1.1.8
Simplify the numerator.
Step 3.6.2.1.1.8.1
Multiply by .
Step 3.6.2.1.1.8.2
Subtract from .
Step 3.6.2.1.2
Multiply the numerator by the reciprocal of the denominator.
Step 3.6.2.1.3
Cancel the common factor of .
Step 3.6.2.1.3.1
Factor out of .
Step 3.6.2.1.3.2
Factor out of .
Step 3.6.2.1.3.3
Cancel the common factor.
Step 3.6.2.1.3.4
Rewrite the expression.
Step 3.6.2.1.4
Multiply by .
Step 3.6.2.1.5
Multiply by .
Step 3.6.3
Replace all occurrences of in with .
Step 3.6.4
Simplify the right side.
Step 3.6.4.1
Simplify .
Step 3.6.4.1.1
Combine the numerators over the common denominator.
Step 3.6.4.1.2
Simplify each term.
Step 3.6.4.1.2.1
Multiply .
Step 3.6.4.1.2.1.1
Combine and .
Step 3.6.4.1.2.1.2
Multiply by .
Step 3.6.4.1.2.2
Move the negative in front of the fraction.
Step 3.6.4.1.3
To write as a fraction with a common denominator, multiply by .
Step 3.6.4.1.4
Combine and .
Step 3.6.4.1.5
Combine the numerators over the common denominator.
Step 3.6.4.1.6
Simplify the numerator.
Step 3.6.4.1.6.1
Multiply by .
Step 3.6.4.1.6.2
Subtract from .
Step 3.6.4.1.7
Move the negative in front of the fraction.
Step 3.6.4.1.8
Multiply the numerator by the reciprocal of the denominator.
Step 3.6.4.1.9
Cancel the common factor of .
Step 3.6.4.1.9.1
Move the leading negative in into the numerator.
Step 3.6.4.1.9.2
Factor out of .
Step 3.6.4.1.9.3
Cancel the common factor.
Step 3.6.4.1.9.4
Rewrite the expression.
Step 3.6.4.1.10
Move the negative in front of the fraction.
Step 3.7
List all of the solutions.