Finite Math Examples

Solve the Matrix Equation A[[8,-5,-4],[1,-4,4],[-6,-2,9]]B=[[-7,2,5],[9,-9,4],[5,-1,5]]
A[8-5-41-44-6-29]B=[-7259-945-15]A854144629B=725994515
Step 1
Multiply A by each element of the matrix.
[A8A-5A-4A1A-4A4A-6A-2A9]
Step 2
Simplify each element in the matrix.
Tap for more steps...
Step 2.1
Move 8 to the left of A.
[8AA-5A-4A1A-4A4A-6A-2A9]
Step 2.2
Move -5 to the left of A.
[8A-5AA-4A1A-4A4A-6A-2A9]
Step 2.3
Move -4 to the left of A.
[8A-5A-4AA1A-4A4A-6A-2A9]
Step 2.4
Multiply A by 1.
[8A-5A-4AAA-4A4A-6A-2A9]
Step 2.5
Move -4 to the left of A.
[8A-5A-4AA-4AA4A-6A-2A9]
Step 2.6
Move 4 to the left of A.
[8A-5A-4AA-4A4AA-6A-2A9]
Step 2.7
Move -6 to the left of A.
[8A-5A-4AA-4A4A-6AA-2A9]
Step 2.8
Move -2 to the left of A.
[8A-5A-4AA-4A4A-6A-2AA9]
Step 2.9
Move 9 to the left of A.
[8A-5A-4AA-4A4A-6A-2A9A]
[8A-5A-4AA-4A4A-6A-2A9A]
Step 3
Find the inverse of [8A-5A-4AA-4A4A-6A-2A9A].
Tap for more steps...
Step 3.1
Rewrite.
|8A-5A-4AA-4A4A-6A-2A9A|
Step 3.2
Find the determinant.
Tap for more steps...
Step 3.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Tap for more steps...
Step 3.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 3.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 3.2.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-4A4A-2A9A|
Step 3.2.1.4
Multiply element a11 by its cofactor.
8A|-4A4A-2A9A|
Step 3.2.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|A4A-6A9A|
Step 3.2.1.6
Multiply element a12 by its cofactor.
5A|A4A-6A9A|
Step 3.2.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|A-4A-6A-2A|
Step 3.2.1.8
Multiply element a13 by its cofactor.
-4A|A-4A-6A-2A|
Step 3.2.1.9
Add the terms together.
8A|-4A4A-2A9A|+5A|A4A-6A9A|-4A|A-4A-6A-2A|
8A|-4A4A-2A9A|+5A|A4A-6A9A|-4A|A-4A-6A-2A|
Step 3.2.2
Evaluate |-4A4A-2A9A|.
Tap for more steps...
Step 3.2.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
8A(-4A(9A)-(-2A(4A)))+5A|A4A-6A9A|-4A|A-4A-6A-2A|
Step 3.2.2.2
Simplify the determinant.
Tap for more steps...
Step 3.2.2.2.1
Simplify each term.
Tap for more steps...
Step 3.2.2.2.1.1
Rewrite using the commutative property of multiplication.
8A(-49AA-(-2A(4A)))+5A|A4A-6A9A|-4A|A-4A-6A-2A|
Step 3.2.2.2.1.2
Multiply A by A by adding the exponents.
Tap for more steps...
Step 3.2.2.2.1.2.1
Move A.
8A(-49(AA)-(-2A(4A)))+5A|A4A-6A9A|-4A|A-4A-6A-2A|
Step 3.2.2.2.1.2.2
Multiply A by A.
8A(-49A2-(-2A(4A)))+5A|A4A-6A9A|-4A|A-4A-6A-2A|
8A(-49A2-(-2A(4A)))+5A|A4A-6A9A|-4A|A-4A-6A-2A|
Step 3.2.2.2.1.3
Multiply -4 by 9.
8A(-36A2-(-2A(4A)))+5A|A4A-6A9A|-4A|A-4A-6A-2A|
Step 3.2.2.2.1.4
Multiply A by A by adding the exponents.
Tap for more steps...
Step 3.2.2.2.1.4.1
Move A.
8A(-36A2-(-2(AA)4))+5A|A4A-6A9A|-4A|A-4A-6A-2A|
Step 3.2.2.2.1.4.2
Multiply A by A.
8A(-36A2-(-2A24))+5A|A4A-6A9A|-4A|A-4A-6A-2A|
8A(-36A2-(-2A24))+5A|A4A-6A9A|-4A|A-4A-6A-2A|
Step 3.2.2.2.1.5
Multiply 4 by -2.
8A(-36A2-(-8A2))+5A|A4A-6A9A|-4A|A-4A-6A-2A|
Step 3.2.2.2.1.6
Multiply -8 by -1.
8A(-36A2+8A2)+5A|A4A-6A9A|-4A|A-4A-6A-2A|
8A(-36A2+8A2)+5A|A4A-6A9A|-4A|A-4A-6A-2A|
Step 3.2.2.2.2
Add -36A2 and 8A2.
8A(-28A2)+5A|A4A-6A9A|-4A|A-4A-6A-2A|
8A(-28A2)+5A|A4A-6A9A|-4A|A-4A-6A-2A|
8A(-28A2)+5A|A4A-6A9A|-4A|A-4A-6A-2A|
Step 3.2.3
Evaluate |A4A-6A9A|.
Tap for more steps...
Step 3.2.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
8A(-28A2)+5A(A(9A)-(-6A(4A)))-4A|A-4A-6A-2A|
Step 3.2.3.2
Simplify the determinant.
Tap for more steps...
Step 3.2.3.2.1
Simplify each term.
Tap for more steps...
Step 3.2.3.2.1.1
Rewrite using the commutative property of multiplication.
8A(-28A2)+5A(9AA-(-6A(4A)))-4A|A-4A-6A-2A|
Step 3.2.3.2.1.2
Multiply A by A by adding the exponents.
Tap for more steps...
Step 3.2.3.2.1.2.1
Move A.
8A(-28A2)+5A(9(AA)-(-6A(4A)))-4A|A-4A-6A-2A|
Step 3.2.3.2.1.2.2
Multiply A by A.
8A(-28A2)+5A(9A2-(-6A(4A)))-4A|A-4A-6A-2A|
8A(-28A2)+5A(9A2-(-6A(4A)))-4A|A-4A-6A-2A|
Step 3.2.3.2.1.3
Multiply A by A by adding the exponents.
Tap for more steps...
Step 3.2.3.2.1.3.1
Move A.
8A(-28A2)+5A(9A2-(-6(AA)4))-4A|A-4A-6A-2A|
Step 3.2.3.2.1.3.2
Multiply A by A.
8A(-28A2)+5A(9A2-(-6A24))-4A|A-4A-6A-2A|
8A(-28A2)+5A(9A2-(-6A24))-4A|A-4A-6A-2A|
Step 3.2.3.2.1.4
Multiply 4 by -6.
8A(-28A2)+5A(9A2-(-24A2))-4A|A-4A-6A-2A|
Step 3.2.3.2.1.5
Multiply -24 by -1.
8A(-28A2)+5A(9A2+24A2)-4A|A-4A-6A-2A|
8A(-28A2)+5A(9A2+24A2)-4A|A-4A-6A-2A|
Step 3.2.3.2.2
Add 9A2 and 24A2.
8A(-28A2)+5A(33A2)-4A|A-4A-6A-2A|
8A(-28A2)+5A(33A2)-4A|A-4A-6A-2A|
8A(-28A2)+5A(33A2)-4A|A-4A-6A-2A|
Step 3.2.4
Evaluate |A-4A-6A-2A|.
Tap for more steps...
Step 3.2.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
8A(-28A2)+5A(33A2)-4A(A(-2A)-(-6A(-4A)))
Step 3.2.4.2
Simplify the determinant.
Tap for more steps...
Step 3.2.4.2.1
Simplify each term.
Tap for more steps...
Step 3.2.4.2.1.1
Rewrite using the commutative property of multiplication.
8A(-28A2)+5A(33A2)-4A(-2AA-(-6A(-4A)))
Step 3.2.4.2.1.2
Multiply A by A by adding the exponents.
Tap for more steps...
Step 3.2.4.2.1.2.1
Move A.
8A(-28A2)+5A(33A2)-4A(-2(AA)-(-6A(-4A)))
Step 3.2.4.2.1.2.2
Multiply A by A.
8A(-28A2)+5A(33A2)-4A(-2A2-(-6A(-4A)))
8A(-28A2)+5A(33A2)-4A(-2A2-(-6A(-4A)))
Step 3.2.4.2.1.3
Multiply A by A by adding the exponents.
Tap for more steps...
Step 3.2.4.2.1.3.1
Move A.
8A(-28A2)+5A(33A2)-4A(-2A2-(-6(AA)-4))
Step 3.2.4.2.1.3.2
Multiply A by A.
8A(-28A2)+5A(33A2)-4A(-2A2-(-6A2-4))
8A(-28A2)+5A(33A2)-4A(-2A2-(-6A2-4))
Step 3.2.4.2.1.4
Multiply -4 by -6.
8A(-28A2)+5A(33A2)-4A(-2A2-(24A2))
Step 3.2.4.2.1.5
Multiply 24 by -1.
8A(-28A2)+5A(33A2)-4A(-2A2-24A2)
8A(-28A2)+5A(33A2)-4A(-2A2-24A2)
Step 3.2.4.2.2
Subtract 24A2 from -2A2.
8A(-28A2)+5A(33A2)-4A(-26A2)
8A(-28A2)+5A(33A2)-4A(-26A2)
8A(-28A2)+5A(33A2)-4A(-26A2)
Step 3.2.5
Simplify the determinant.
Tap for more steps...
Step 3.2.5.1
Simplify each term.
Tap for more steps...
Step 3.2.5.1.1
Rewrite using the commutative property of multiplication.
8-28AA2+5A(33A2)-4A(-26A2)
Step 3.2.5.1.2
Multiply A by A2 by adding the exponents.
Tap for more steps...
Step 3.2.5.1.2.1
Move A2.
8-28(A2A)+5A(33A2)-4A(-26A2)
Step 3.2.5.1.2.2
Multiply A2 by A.
Tap for more steps...
Step 3.2.5.1.2.2.1
Raise A to the power of 1.
8-28(A2A1)+5A(33A2)-4A(-26A2)
Step 3.2.5.1.2.2.2
Use the power rule aman=am+n to combine exponents.
8-28A2+1+5A(33A2)-4A(-26A2)
8-28A2+1+5A(33A2)-4A(-26A2)
Step 3.2.5.1.2.3
Add 2 and 1.
8-28A3+5A(33A2)-4A(-26A2)
8-28A3+5A(33A2)-4A(-26A2)
Step 3.2.5.1.3
Multiply 8 by -28.
-224A3+5A(33A2)-4A(-26A2)
Step 3.2.5.1.4
Rewrite using the commutative property of multiplication.
-224A3+533AA2-4A(-26A2)
Step 3.2.5.1.5
Multiply A by A2 by adding the exponents.
Tap for more steps...
Step 3.2.5.1.5.1
Move A2.
-224A3+533(A2A)-4A(-26A2)
Step 3.2.5.1.5.2
Multiply A2 by A.
Tap for more steps...
Step 3.2.5.1.5.2.1
Raise A to the power of 1.
-224A3+533(A2A1)-4A(-26A2)
Step 3.2.5.1.5.2.2
Use the power rule aman=am+n to combine exponents.
-224A3+533A2+1-4A(-26A2)
-224A3+533A2+1-4A(-26A2)
Step 3.2.5.1.5.3
Add 2 and 1.
-224A3+533A3-4A(-26A2)
-224A3+533A3-4A(-26A2)
Step 3.2.5.1.6
Multiply 5 by 33.
-224A3+165A3-4A(-26A2)
Step 3.2.5.1.7
Rewrite using the commutative property of multiplication.
-224A3+165A3-4-26AA2
Step 3.2.5.1.8
Multiply A by A2 by adding the exponents.
Tap for more steps...
Step 3.2.5.1.8.1
Move A2.
-224A3+165A3-4-26(A2A)
Step 3.2.5.1.8.2
Multiply A2 by A.
Tap for more steps...
Step 3.2.5.1.8.2.1
Raise A to the power of 1.
-224A3+165A3-4-26(A2A1)
Step 3.2.5.1.8.2.2
Use the power rule aman=am+n to combine exponents.
-224A3+165A3-4-26A2+1
-224A3+165A3-4-26A2+1
Step 3.2.5.1.8.3
Add 2 and 1.
-224A3+165A3-4-26A3
-224A3+165A3-4-26A3
Step 3.2.5.1.9
Multiply -4 by -26.
-224A3+165A3+104A3
-224A3+165A3+104A3
Step 3.2.5.2
Add -224A3 and 165A3.
-59A3+104A3
Step 3.2.5.3
Add -59A3 and 104A3.
45A3
45A3
45A3
Step 3.3
Since the determinant is non-zero, the inverse exists.
Step 3.4
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[8A-5A-4A100A-4A4A010-6A-2A9A001]
Step 3.5
Find the reduced row echelon form.
Tap for more steps...
Step 3.5.1
Multiply each element of R1 by 18A to make the entry at 1,1 a 1.
Tap for more steps...
Step 3.5.1.1
Multiply each element of R1 by 18A to make the entry at 1,1 a 1.
[8A8A-5A8A-4A8A18A08A08AA-4A4A010-6A-2A9A001]
Step 3.5.1.2
Simplify R1.
[1-58-1218A00A-4A4A010-6A-2A9A001]
[1-58-1218A00A-4A4A010-6A-2A9A001]
Step 3.5.2
Perform the row operation R2=R2-AR1 to make the entry at 2,1 a 0.
Tap for more steps...
Step 3.5.2.1
Perform the row operation R2=R2-AR1 to make the entry at 2,1 a 0.
[1-58-1218A00A-A1-4A-A(-58)4A-A(-12)0-A18A1-A00-A0-6A-2A9A001]
Step 3.5.2.2
Simplify R2.
[1-58-1218A000-27A89A2-1810-6A-2A9A001]
[1-58-1218A000-27A89A2-1810-6A-2A9A001]
Step 3.5.3
Perform the row operation R3=R3+6AR1 to make the entry at 3,1 a 0.
Tap for more steps...
Step 3.5.3.1
Perform the row operation R3=R3+6AR1 to make the entry at 3,1 a 0.
[1-58-1218A000-27A89A2-1810-6A+6A1-2A+6A(-58)9A+6A(-12)0+6A18A0+6A01+6A0]
Step 3.5.3.2
Simplify R3.
[1-58-1218A000-27A89A2-18100-23A46A3401]
[1-58-1218A000-27A89A2-18100-23A46A3401]
Step 3.5.4
Multiply each element of R2 by -827A to make the entry at 2,2 a 1.
Tap for more steps...
Step 3.5.4.1
Multiply each element of R2 by -827A to make the entry at 2,2 a 1.
[1-58-1218A00-827A0-827A(-27A8)-827A9A2-827A(-18)-827A1-827A00-23A46A3401]
Step 3.5.4.2
Simplify R2.
[1-58-1218A0001-43127A-827A00-23A46A3401]
[1-58-1218A0001-43127A-827A00-23A46A3401]
Step 3.5.5
Perform the row operation R3=R3+23A4R2 to make the entry at 3,2 a 0.
Tap for more steps...
Step 3.5.5.1
Perform the row operation R3=R3+23A4R2 to make the entry at 3,2 a 0.
[1-58-1218A0001-43127A-827A00+23A40-23A4+23A416A+23A4(-43)34+23A4127A0+23A4(-827A)1+23A40]
Step 3.5.5.2
Simplify R3.
[1-58-1218A0001-43127A-827A000-5A32627-46271]
[1-58-1218A0001-43127A-827A000-5A32627-46271]
Step 3.5.6
Multiply each element of R3 by -35A to make the entry at 3,3 a 1.
Tap for more steps...
Step 3.5.6.1
Multiply each element of R3 by -35A to make the entry at 3,3 a 1.
[1-58-1218A0001-43127A-827A0-35A0-35A0-35A(-5A3)-35A2627-35A(-4627)-35A1]
Step 3.5.6.2
Simplify R3.
[1-58-1218A0001-43127A-827A0001-2645A4645A-35A]
[1-58-1218A0001-43127A-827A0001-2645A4645A-35A]
Step 3.5.7
Perform the row operation R2=R2+43R3 to make the entry at 2,3 a 0.
Tap for more steps...
Step 3.5.7.1
Perform the row operation R2=R2+43R3 to make the entry at 2,3 a 0.
[1-58-1218A000+4301+430-43+431127A+43(-2645A)-827A+434645A0+43(-35A)001-2645A4645A-35A]
Step 3.5.7.2
Simplify R2.
[1-58-1218A00010-1115A1615A-45A001-2645A4645A-35A]
[1-58-1218A00010-1115A1615A-45A001-2645A4645A-35A]
Step 3.5.8
Perform the row operation R1=R1+12R3 to make the entry at 1,3 a 0.
Tap for more steps...
Step 3.5.8.1
Perform the row operation R1=R1+12R3 to make the entry at 1,3 a 0.
[1+120-58+120-12+12118A+12(-2645A)0+124645A0+12(-35A)010-1115A1615A-45A001-2645A4645A-35A]
Step 3.5.8.2
Simplify R1.
[1-580-59360A2345A-310A010-1115A1615A-45A001-2645A4645A-35A]
[1-580-59360A2345A-310A010-1115A1615A-45A001-2645A4645A-35A]
Step 3.5.9
Perform the row operation R1=R1+58R2 to make the entry at 1,2 a 0.
Tap for more steps...
Step 3.5.9.1
Perform the row operation R1=R1+58R2 to make the entry at 1,2 a 0.
[1+580-58+5810+580-59360A+58(-1115A)2345A+581615A-310A+58(-45A)010-1115A1615A-45A001-2645A4645A-35A]
Step 3.5.9.2
Simplify R1.
[100-2845A5345A-45A010-1115A1615A-45A001-2645A4645A-35A]
[100-2845A5345A-45A010-1115A1615A-45A001-2645A4645A-35A]
[100-2845A5345A-45A010-1115A1615A-45A001-2645A4645A-35A]
Step 3.6
The right half of the reduced row echelon form is the inverse.
[-2845A5345A-45A-1115A1615A-45A-2645A4645A-35A]
[-2845A5345A-45A-1115A1615A-45A-2645A4645A-35A]
Step 4
Multiply both sides by the inverse of [8A-5A-4AA-4A4A-6A-2A9A].
[-2845A5345A-45A-1115A1615A-45A-2645A4645A-35A][8A-5A-4AA-4A4A-6A-2A9A]B=[-2845A5345A-45A-1115A1615A-45A-2645A4645A-35A][-7259-945-15]
Step 5
Simplify the equation.
Tap for more steps...
Step 5.1
Multiply [-2845A5345A-45A-1115A1615A-45A-2645A4645A-35A][8A-5A-4AA-4A4A-6A-2A9A].
Tap for more steps...
Step 5.1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×3.
Step 5.1.2
Multiply each row in the first matrix by each column in the second matrix.
[-2845A(8A)+5345AA-45A(-6A)-2845A(-5A)+5345A(-4A)-45A(-2A)-2845A(-4A)+5345A(4A)-45A(9A)-1115A(8A)+1615AA-45A(-6A)-1115A(-5A)+1615A(-4A)-45A(-2A)-1115A(-4A)+1615A(4A)-45A(9A)-2645A(8A)+4645AA-35A(-6A)-2645A(-5A)+4645A(-4A)-35A(-2A)-2645A(-4A)+4645A(4A)-35A(9A)]B=[-2845A5345A-45A-1115A1615A-45A-2645A4645A-35A][-7259-945-15]
Step 5.1.3
Simplify each element of the matrix by multiplying out all the expressions.
[100010001]B=[-2845A5345A-45A-1115A1615A-45A-2645A4645A-35A][-7259-945-15]
[100010001]B=[-2845A5345A-45A-1115A1615A-45A-2645A4645A-35A][-7259-945-15]
Step 5.2
Multiplying the identity matrix by any matrix A is the matrix A itself.
B=[-2845A5345A-45A-1115A1615A-45A-2645A4645A-35A][-7259-945-15]
Step 5.3
Multiply [-2845A5345A-45A-1115A1615A-45A-2645A4645A-35A][-7259-945-15].
Tap for more steps...
Step 5.3.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×3.
Step 5.3.2
Multiply each row in the first matrix by each column in the second matrix.
B=[-2845A-7+5345A9-45A5-2845A2+5345A-9-45A-1-2845A5+5345A4-45A5-1115A-7+1615A9-45A5-1115A2+1615A-9-45A-1-1115A5+1615A4-45A5-2645A-7+4645A9-35A5-2645A2+4645A-9-35A-1-2645A5+4645A4-35A5]
Step 5.3.3
Simplify each element of the matrix by multiplying out all the expressions.
B=[49345A-49745A-125A16115A-15415A-175A46145A-43945A-95A]
B=[49345A-49745A-125A16115A-15415A-175A46145A-43945A-95A]
B=[49345A-49745A-125A16115A-15415A-175A46145A-43945A-95A]
 [x2  12  π  xdx ]