Enter a problem...
Finite Math Examples
f(x)=(3x-1)3(x2+1)2f(x)=(3x−1)3(x2+1)2
Step 1
A rational function is any function which can be written as the ratio of two polynomial functions where the denominator is not 00.
f(x)=(3x-1)3(x2+1)2f(x)=(3x−1)3(x2+1)2 is a rational function
Step 2
A rational function is proper when the degree of the numerator is less than the degree of the denominator, otherwise it is improper.
Degree of numerator is less than the degree of denominator implies a proper function
Degree of numerator is greater than the degree of denominator implies an improper function
Degree of numerator is equal to the degree of denominator implies an improper function
Step 3
Step 3.1
Simplify and reorder the polynomial.
Step 3.1.1
Use the Binomial Theorem.
(3x)3+3(3x)2⋅-1+3(3x)(-1)2+(-1)3(3x)3+3(3x)2⋅−1+3(3x)(−1)2+(−1)3
Step 3.1.2
Simplify each term.
Step 3.1.2.1
Apply the product rule to 3x3x.
33x3+3(3x)2⋅-1+3(3x)(-1)2+(-1)333x3+3(3x)2⋅−1+3(3x)(−1)2+(−1)3
Step 3.1.2.2
Raise 33 to the power of 33.
27x3+3(3x)2⋅-1+3(3x)(-1)2+(-1)327x3+3(3x)2⋅−1+3(3x)(−1)2+(−1)3
Step 3.1.2.3
Apply the product rule to 3x3x.
27x3+3(32x2)⋅-1+3(3x)(-1)2+(-1)327x3+3(32x2)⋅−1+3(3x)(−1)2+(−1)3
Step 3.1.2.4
Multiply 33 by 3232 by adding the exponents.
Step 3.1.2.4.1
Move 3232.
27x3+32⋅3x2⋅-1+3(3x)(-1)2+(-1)327x3+32⋅3x2⋅−1+3(3x)(−1)2+(−1)3
Step 3.1.2.4.2
Multiply 3232 by 33.
Step 3.1.2.4.2.1
Raise 33 to the power of 11.
27x3+32⋅31x2⋅-1+3(3x)(-1)2+(-1)327x3+32⋅31x2⋅−1+3(3x)(−1)2+(−1)3
Step 3.1.2.4.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
27x3+32+1x2⋅-1+3(3x)(-1)2+(-1)327x3+32+1x2⋅−1+3(3x)(−1)2+(−1)3
27x3+32+1x2⋅-1+3(3x)(-1)2+(-1)327x3+32+1x2⋅−1+3(3x)(−1)2+(−1)3
Step 3.1.2.4.3
Add 22 and 11.
27x3+33x2⋅-1+3(3x)(-1)2+(-1)327x3+33x2⋅−1+3(3x)(−1)2+(−1)3
27x3+33x2⋅-1+3(3x)(-1)2+(-1)327x3+33x2⋅−1+3(3x)(−1)2+(−1)3
Step 3.1.2.5
Raise 33 to the power of 33.
27x3+27x2⋅-1+3(3x)(-1)2+(-1)327x3+27x2⋅−1+3(3x)(−1)2+(−1)3
Step 3.1.2.6
Multiply -1−1 by 2727.
27x3-27x2+3(3x)(-1)2+(-1)327x3−27x2+3(3x)(−1)2+(−1)3
Step 3.1.2.7
Multiply 33 by 33.
27x3-27x2+9x(-1)2+(-1)327x3−27x2+9x(−1)2+(−1)3
Step 3.1.2.8
Raise -1−1 to the power of 22.
27x3-27x2+9x⋅1+(-1)327x3−27x2+9x⋅1+(−1)3
Step 3.1.2.9
Multiply 99 by 11.
27x3-27x2+9x+(-1)327x3−27x2+9x+(−1)3
Step 3.1.2.10
Raise -1−1 to the power of 33.
27x3-27x2+9x-127x3−27x2+9x−1
27x3-27x2+9x-127x3−27x2+9x−1
27x3-27x2+9x-127x3−27x2+9x−1
Step 3.2
The largest exponent is the degree of the polynomial.
33
33
Step 4
Step 4.1
Simplify and reorder the polynomial.
Step 4.1.1
Rewrite (x2+1)2(x2+1)2 as (x2+1)(x2+1)(x2+1)(x2+1).
(x2+1)(x2+1)
Step 4.1.2
Expand (x2+1)(x2+1) using the FOIL Method.
Step 4.1.2.1
Apply the distributive property.
x2(x2+1)+1(x2+1)
Step 4.1.2.2
Apply the distributive property.
x2x2+x2⋅1+1(x2+1)
Step 4.1.2.3
Apply the distributive property.
x2x2+x2⋅1+1x2+1⋅1
x2x2+x2⋅1+1x2+1⋅1
Step 4.1.3
Simplify and combine like terms.
Step 4.1.3.1
Simplify each term.
Step 4.1.3.1.1
Multiply x2 by x2 by adding the exponents.
Step 4.1.3.1.1.1
Use the power rule aman=am+n to combine exponents.
x2+2+x2⋅1+1x2+1⋅1
Step 4.1.3.1.1.2
Add 2 and 2.
x4+x2⋅1+1x2+1⋅1
x4+x2⋅1+1x2+1⋅1
Step 4.1.3.1.2
Multiply x2 by 1.
x4+x2+1x2+1⋅1
Step 4.1.3.1.3
Multiply x2 by 1.
x4+x2+x2+1⋅1
Step 4.1.3.1.4
Multiply 1 by 1.
x4+x2+x2+1
x4+x2+x2+1
Step 4.1.3.2
Add x2 and x2.
x4+2x2+1
x4+2x2+1
x4+2x2+1
Step 4.2
The largest exponent is the degree of the polynomial.
4
4
Step 5
The degree of the numerator 3 is less than the degree of the denominator 4.
3<4
Step 6
The degree of the numerator is less than the degree of the denominator, which means that f(x) is a proper function.
Proper