Finite Math Examples

Determine if Proper or Improper f(x)=((3x-1)^3)/((x^2+1)^2)
f(x)=(3x-1)3(x2+1)2f(x)=(3x1)3(x2+1)2
Step 1
A rational function is any function which can be written as the ratio of two polynomial functions where the denominator is not 00.
f(x)=(3x-1)3(x2+1)2f(x)=(3x1)3(x2+1)2 is a rational function
Step 2
A rational function is proper when the degree of the numerator is less than the degree of the denominator, otherwise it is improper.
Degree of numerator is less than the degree of denominator implies a proper function
Degree of numerator is greater than the degree of denominator implies an improper function
Degree of numerator is equal to the degree of denominator implies an improper function
Step 3
Find the degree of the numerator.
Tap for more steps...
Step 3.1
Simplify and reorder the polynomial.
Tap for more steps...
Step 3.1.1
Use the Binomial Theorem.
(3x)3+3(3x)2-1+3(3x)(-1)2+(-1)3(3x)3+3(3x)21+3(3x)(1)2+(1)3
Step 3.1.2
Simplify each term.
Tap for more steps...
Step 3.1.2.1
Apply the product rule to 3x3x.
33x3+3(3x)2-1+3(3x)(-1)2+(-1)333x3+3(3x)21+3(3x)(1)2+(1)3
Step 3.1.2.2
Raise 33 to the power of 33.
27x3+3(3x)2-1+3(3x)(-1)2+(-1)327x3+3(3x)21+3(3x)(1)2+(1)3
Step 3.1.2.3
Apply the product rule to 3x3x.
27x3+3(32x2)-1+3(3x)(-1)2+(-1)327x3+3(32x2)1+3(3x)(1)2+(1)3
Step 3.1.2.4
Multiply 33 by 3232 by adding the exponents.
Tap for more steps...
Step 3.1.2.4.1
Move 3232.
27x3+323x2-1+3(3x)(-1)2+(-1)327x3+323x21+3(3x)(1)2+(1)3
Step 3.1.2.4.2
Multiply 3232 by 33.
Tap for more steps...
Step 3.1.2.4.2.1
Raise 33 to the power of 11.
27x3+3231x2-1+3(3x)(-1)2+(-1)327x3+3231x21+3(3x)(1)2+(1)3
Step 3.1.2.4.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
27x3+32+1x2-1+3(3x)(-1)2+(-1)327x3+32+1x21+3(3x)(1)2+(1)3
27x3+32+1x2-1+3(3x)(-1)2+(-1)327x3+32+1x21+3(3x)(1)2+(1)3
Step 3.1.2.4.3
Add 22 and 11.
27x3+33x2-1+3(3x)(-1)2+(-1)327x3+33x21+3(3x)(1)2+(1)3
27x3+33x2-1+3(3x)(-1)2+(-1)327x3+33x21+3(3x)(1)2+(1)3
Step 3.1.2.5
Raise 33 to the power of 33.
27x3+27x2-1+3(3x)(-1)2+(-1)327x3+27x21+3(3x)(1)2+(1)3
Step 3.1.2.6
Multiply -11 by 2727.
27x3-27x2+3(3x)(-1)2+(-1)327x327x2+3(3x)(1)2+(1)3
Step 3.1.2.7
Multiply 33 by 33.
27x3-27x2+9x(-1)2+(-1)327x327x2+9x(1)2+(1)3
Step 3.1.2.8
Raise -11 to the power of 22.
27x3-27x2+9x1+(-1)327x327x2+9x1+(1)3
Step 3.1.2.9
Multiply 99 by 11.
27x3-27x2+9x+(-1)327x327x2+9x+(1)3
Step 3.1.2.10
Raise -11 to the power of 33.
27x3-27x2+9x-127x327x2+9x1
27x3-27x2+9x-127x327x2+9x1
27x3-27x2+9x-127x327x2+9x1
Step 3.2
The largest exponent is the degree of the polynomial.
33
33
Step 4
Find the degree of the denominator.
Tap for more steps...
Step 4.1
Simplify and reorder the polynomial.
Tap for more steps...
Step 4.1.1
Rewrite (x2+1)2(x2+1)2 as (x2+1)(x2+1)(x2+1)(x2+1).
(x2+1)(x2+1)
Step 4.1.2
Expand (x2+1)(x2+1) using the FOIL Method.
Tap for more steps...
Step 4.1.2.1
Apply the distributive property.
x2(x2+1)+1(x2+1)
Step 4.1.2.2
Apply the distributive property.
x2x2+x21+1(x2+1)
Step 4.1.2.3
Apply the distributive property.
x2x2+x21+1x2+11
x2x2+x21+1x2+11
Step 4.1.3
Simplify and combine like terms.
Tap for more steps...
Step 4.1.3.1
Simplify each term.
Tap for more steps...
Step 4.1.3.1.1
Multiply x2 by x2 by adding the exponents.
Tap for more steps...
Step 4.1.3.1.1.1
Use the power rule aman=am+n to combine exponents.
x2+2+x21+1x2+11
Step 4.1.3.1.1.2
Add 2 and 2.
x4+x21+1x2+11
x4+x21+1x2+11
Step 4.1.3.1.2
Multiply x2 by 1.
x4+x2+1x2+11
Step 4.1.3.1.3
Multiply x2 by 1.
x4+x2+x2+11
Step 4.1.3.1.4
Multiply 1 by 1.
x4+x2+x2+1
x4+x2+x2+1
Step 4.1.3.2
Add x2 and x2.
x4+2x2+1
x4+2x2+1
x4+2x2+1
Step 4.2
The largest exponent is the degree of the polynomial.
4
4
Step 5
The degree of the numerator 3 is less than the degree of the denominator 4.
3<4
Step 6
The degree of the numerator is less than the degree of the denominator, which means that f(x) is a proper function.
Proper
 [x2  12  π  xdx ]